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PREFACE

This is an attempt to assimilate the rapidly increasing
literature available on the ''pseudo' invertibility of matrices.

Chapter 2 is an exposition of several definitions of a pseudo
inverse of a matrix. The equivalence or near equivalence of these
definitions are established. Conditions sufficient for the equivalence
of others are also given.

Chapter 3 establishes many properties of the Penrose pseudo
inverse, which seems to be the formulation most easily understood and
lends itself well to algebraic manipulations so that many properties
can be established without going into more sophisticated analysis.

An attempt has been made to present alternative forms and formulations
of the Penrose pseudo inverse while at the same time keeping the present-
tation as comprehensible as possible so that a minimum of preparation
and effort are required on the part of the reader.

Chapter 4 is devoted to the Scroggs-Odell pseudo inverse which
requires more analysis to comprehend and work with than the Penrose
definition. Properties of this pseudo inverse are somewhat difficult
and lengthy to establish, and thus it is felt that an incorporation
of this definition in the previous chapters would disrupt the "mini-
mum of preparation and effort on the part of the reader'" attempt in
those chapters. Many properties are established and sufficient
conditions for others are given. Pseudo inverses in general are
investigated and the relationship between any two pseudo inverses is
established. Necessary and sufficient conditions for the Scroggs-Odell
and Penrose definitions to be equivalent over their common domain of

definition are also established.
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Chapter 5 is an assimilation of available material on the many
applications of pseudo inverses. Emphasis is on applications in the
field of statistics and some background in statistics is required.

Chapter 6 is a presentation of several computing schemes for
obtaining the (Penrose) pseudoinverse of a matrix. The techniques
are presented along with some comment concerning their merits. The
same numerical example is used to illustrate several of the techniques,

thus facilitating a comparison of the methods presented.
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CHAPTER I

INTRODUCTION

1.1 Histog

The concept of a generalized inverse for arbitrary m x n matrices
with elements from the real or complex fields is of widespread curren/t
interest. Much research has been done in the past decade on the theory
and applications of a pseudo inverse for matrices. Indeed, research
is presently béing carried further at a very rapid pace.

In a paper given at the Fourteenth Western Meeting of the Ameri-
can Mathematical Society at the University of Chicago, April 9-10, 1920,
Professor E. H. Moore first called attention to a '"useful extension of

the classical notion of the reciprocal of a nonsingular square matrix' [65].

Analysis [66], his pioneering work being unfortunately somewhat obscured
by rather inaccessible notation. Parts of Moore's work have been
interpreted by Ben-Israel and Charnes [6] and by Greville [49]. The
definition of the pseudo inverse of a matrix A, denoted by A+,
originally given by Moore has been interpreted by Ben-Israel and Charnes

[6] to be:

A" is the pseudo inverse of A if

Pre) (1)

AA = PR(A+) , (2)




where PR(A) is an orthogonal projection on the range space of A.
Moore established the existence and uniqueness of A+, for any A,
and gave an explicit form for A" in terms of the subdeterminants
of A and A* , the conjugate transpose of A. Various properties
of A" and the relations among A, A* , and A" were incorporated
in his General Analysis, and concurrently were given an algebraic
basis and extensions by Von Neumann [89] in his studies on regular
rings.

Unaware of Moore's results, Bjerhammar [13, 14] and Penrose
(70, 71] each gave independent treatments of the pseudo inverse.
Bjerhammar constructed A by identifying it with a submatrix of the
inverse of a suitable square nonsingular matrix, obtained by multiply-

ing A with another matrix. The general solution of

when solvable, was given by Bjerhammar as
x=ADb+ (I-ANY,

where y is arbitrary up to dimensional compatibility. This solution
is a corollary of the definition given by Penrose. The least square
character of the solution was used by Bjerhammar in geodetic appli-
cations; adjusting observations which gave rise to singular matrices.
Penrose [70] defined the pseudo inverse as the unique solution

of the equations



XAX = X,
*

(AX) = X,
*

XA = XA .

As will be seen in Chapter 2, Penrose's proof of the existence and
uniqueness of A" is based on the vanishing of a finite polynomial
in A*A.

As mentioned earlier, some of Moore's results did not become
well known because the unique notation employed was not adopted by
other mathematicians. A clarifying account of Moore's work has been
given by Greville [49] where the theory is redeveloped in a clear
exposition following the original Moore approach.

A more abstract account of the theory of pseudo inverses has
been developed by Ben-Israel and Charnes [6], and F. J. Beutler [11].

Some additional names prominent in the development and study
of the theory and applications of pseudo inverses are Hestenes, Tseng,
Drazin, Cline, Pyle, Rado, Rao, and Decell.

Many of the researchers in the theory of pseudo inverses have
made and discussed various applications of interest and importance.
Previously mentioned were the geodetic applications of Bjerhammar.
Den Broeder and Charnes, Ben-Israel, and others have given explicit
expressions for A" as a limit. One of the expressions of den Broeder
and Charnes [34],

+ L * -1
A = 1lim A (I + AA) R
o



was used to solve a problem in diffusion. Other results by den Broeder
and Chames include some theorems on the pseudoinverse, rank, and
conditions on nonsingularity for some matrices of special structure,

and a necessary and sufficient condition for A to be the solution

of the circle composition equation
A = A+X = XA,

where A is normal.

In developing a spectral theory for arbitrary m x n matrices,
which is an extension of Hermitian theory, Hestenes [52] used A" in
an essential manner to obtain theorems on structure and some properties
of matrices relative to ''elementary matrices' and the relations of
"*-orthogonality" and "*—conmmtativity."

Penrose suggested applications of the pseudoinverse in least
squares solutions to inconsistent linear equations, in particular to
statistical problems. |

Greville [49] gave an iterative procedure for calculating A R
using successive partitions of A. Using A" he modified the proce-
dure of Dent and Newhouse [35] in constructing polynomials orthogonal
over a discrete domain, and used the least squares properties of A"
in regression analysis.

Pyle [74] and Cline [26], following den Broeder and Charnes,
have considered applications to systems of linear equations. The
projections N , and A"A were used by Pyle [74] in a gradient
method for solving linear programming problems. These methods were also
used by Rosen [78, 79] in his conjugate gradient method for solving

linear and nonlinear programs.




An explicit form for the pseudo inverse based upon the
Cayley-Hamilton 'Iheorgm has been established by Decell [33]. This
interesting result leads to a convenient computing technique. The
algorithm is outlined briefly in Chapter 6.

Also, Charnes, Cooper, and Thompson [22] have employed the
pseudo inverse and the associated solvability criteria in an essential
manner to resolve questions of the scope and validity of the so-called
'"linear programming under uncertainty," and to characterize optimal
stochastic decision rules.

Kalman [55] and Florentin [40] have utilized the pseudo inverse
in control theory by using its least squares properties in mean square
error analysis. Ben-Israel and Charnes [4], following Bott and Duffin
[16], have used the pseudo inverse in the analysis of electrical
networks, and obtained the explicit solution, dc or ac, in temms

of its topological and dynamical characteristics.

1.2 Importance

The role of the pseudo inverse of a matrix is increasing
rapidly in importance as the theory of matrices is blossdming in the
formulation and solution of problems. Prior to the advent of the
electronic computer, a mathematician could talk glibly about the
existence and uniqueness of a solution to a system of ten equations in
ten unknowns. Few had ever tried to find the solution of such a
system. Now matrix theory not only provides an extremely helpful

tool for designing a mathematical or statistical model of a system



with many variables, but also affords a practical and convenient
method of adapting the data for processing by a computer. A problem
which occurs in computations resulting in a waste of time and money
is trying to compute the inverse of a matrix which is not known in
advance to be singular. The concept of a ''generalized" or 'pseudo"
inverse of a matrix overcomes this problem and has been found to be
a very useful tool in simplifying and in many cases amplifying the

existing theories in many areas of mathematical statistics.

1.3 Reference System

The chapters are divided into numbered sections. Theorems,
definitions, etc., are also numbered by chapters. For example,
Theorem 2.6 refers to Theorem 6 of Chapter 2.

The equations are numbered anew in each section, and equation
numbers are always enclosed in parentheses. Just the equation |
number is given in referring to an equation in the same section;
otherwise chapter and section numbers are prefixed.

Numbers in brackets refer to the numbered references in the

Bibliography.

1.4 Basic Concepts and Notation

Capital letters are used to designate matrices and lower case
letters for vectors. The n by n identity matrix is denoted by
In and the null or zero matrix, by @ or simply as O. Generally,
the dimensions are clear from the context. In all cases the dimensions




are assumed to be conformable for addition and multiplication to be
well-defined. The matrices are assumed to be defined over the field
of complex numbers unless specified otherwise. The conjugate transpose
Af of an mby n matrix A is the n by m matrix with ij entry
55. where 551 is the chplex conjugate of the element in the ji
position of the matrix A. A matrix is said to be hermitian if
A* = A, and normal if AA# = A*A.

Lower case Greek letters or subscripted lower case letters are
used to represent scalars; i.e. Complex or real numbers. If x and

*®
y are colum vectors, the scalar product xy = (x, y) is defined

to be x1§i + x2§é +...+xy . If (x,y) =0, the vectors
are said to be orthogonal. It is often convenient to denote certain
rectangular submatrices of a given matrix by a single letter, and
thus to consider matrices whose elements themselves are matrices.
A partitioned matrix A in which the submatrices Aij vanish for
i # j is also called diagonal and is denoted by A = diag (A7
A12’ ey A%mg'

A matrix is said to be invertible or nonsingular if it has an
inverse, singular if it does not. A matrix is said to be idempotent
if A% = A |A| is used to designate the determinant of A. A finite
set of matrices is called linearly dependent if there exist scalars,
not all zero, such that ZGiAi = 0, If such a set of scalars does
not exist, the set is said to be linearly independent. Linear inde-
pendence of vectors is a special case of this definition. The rank of

a matrix is the maximum number of linearly independent rows or columns




of the matrix. For any m by n matrix A having linearly independent
colums, there exist n by m matices B , called left inverses of A,
such that BA = I. In fact, all such matrices can be characterized

in terms of one of them as being expressable in the form B + U

where (B+ U)A=1 and UA=0 . A similar situation holds for a
matrix with linearly independent rows in terms of a right inverse.

Many times it is advantageous to consider matrices as represen-
tations of linear operators on finite dimensional vector spaces. Towards
this end, a brief discussion of some linear operator theory needed
later on follows. Since every finite dimensional inner-product vector
space is a Hilbert space, the setting is assumed to be such a space.
For practical purposes one could assume the setting is the Euclidean
n-dimensional vector space over the complex number field. The set of
all vectors x such that Ax = 0 1is called the null space of A
and is denoted by N(A). The set of all vectors y for which there
exist a vector x such that Ax = y is called the range or colum
space of A , and is denoted by R(A). A vector space X is the
direct sum of subspaces U and V if every vector x in X can
be written in the form u+ v, with u in U and v in V , in
one and only one way, in which case we write X=U®V . If X=U®V,
the projection on U along V is the transformation E such that
Ex = u . A linear transformation E is a projection on some subspace

if and only if it is idempotent.



Since it is generally clear from the context, no attempt is
made to distinguish between a linear operator and its matrix
representation.

More specialized notation and definitions are given as needed

in the development of the text.



CHAPTER 2

DEFINITIONS AND THEIR RELATIONSHIPS

2.1 The Penrose Definition

Penrose [70] defined the pseudoinverse of any (possibly rectangular)
matrix over the field of complex numbers in terms of the unique solution
of a certain set of equations. In showing the existence of this
matrix, it will be useful to exploit the following properties of the

&
conjugate transpose A , of the matrix A .

(1.
A = A
*® * ]

(A+B) = A +B

* — %
() = A

* ® *
(BA) = AB

A" =0 implies A

[}
o

®
The last of these follows from the fact that the trace of AA is the
sum of the moduli of the elements of A. From the last two of these

properties we obtain the rule

*
BAA' = CAA" implies BA = CA , 1)
since
* & * *
(BAA" - CAA) (B-C) = (BA-CA) (BA - CA) .
Similarly,
® ] £ *
BAA = CAA implies BA = CA . (2)

10



Theorem 2.1: The four equations

AXA = A (3)
XAX = X (4)
A" = A (5)
" = x 6)

have a unique solution for any matrix A.

Proof: It will be shown that (4) and (5) are equivalent to the

single equation

XXA = X (N

XAA = A . (8)

Equation (7) is obtained by substituting (5) in (4),
* * %
XX = X(AXY) = XXA = X.
Thus, (5) and (4) imply (7). Conversely, (7) implies
® *

AXX A = XX,

the left side of which is hemmitian so that
*
A = (A) .

Now by substituting (5) back into (7) we have

11




&k %X ®x
XA = X(AX) = XAX = X.

Thus, (7) implies (4) and (5).

Substituting (6) into (3) and taking transposes,

* * %
AXA = A(XA) = AAX = A,

thus

x Kk * * *
(AAX) = XAA = A

Hence (3) and (6) imply (8). On the other hand, (8) implies

X % )
XMAMX = AX

x % ®
in which XAA X is hermitian so that (XA)

Now substituting (6) back into (8) gives

and taking transposes again,

® * k % *
(AXA) = A

or
AXA = A.
Therefore (3) and (6) follow from (8).
Summarizing these results:

® %

XAX = X and (AX)" = AX if and only if XX A
* £ 3
and (XA)*=XA if and only if XAA = A

XA , which is (6).

X, and AXA = A

12
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It is sufficient then to find a solution X satisfying (7) and (8).

Such a matrix will exist if a matrix B can be found such that
k % ]
BAAA = A
*
since X = BA will satisfy (8), and since (8) implies
*k & % *
AXA = A
from which it follows that
x k% *
BAXA = BA
*
which proves BA a solution of (7).

. * * 2 * 3 .
Since AA, (AA”, (AA~ , . . . cannot all be linearly
independent, there exists a relation
* L) * TR S |
?\IAA+A2(AA) +...+Ar(AA)r+>\r+1(AA) +

+ + *nk =
. . e xk(A A" = 0

where the Ai are not all zero. Let Ar be the first nonzero A

and put
S | * *  k-r-1
B = A ["r+1I + Ar+2(A A + .., .+ Ak(A A) ] .
Then
] - * *
BAA™ = D AT L e NN

BT = (A"A)T by equation (9).

(9




Now a repeated application of (1) and (2) gives
* % *
BAAA = A
To show that X is unique, X is assumed to satisfy (7) and (8),
which, we recall, summarize the defining equations 3, 4, 5, and 6.

Next suppose that Y satisfies equations 3, 4, 5, and 6.

AYA = A G)
YAY = Y @)
(AY) = AY )
(YA) = YA 6)

] 1 1] 1
Substituting (6 ) in (4 ) and (5 ) in (3 ) gives
*

Y = AYY

and
*® *

A = AAY .

Thus,
* ® ® % * % % %
X = XXA =XXAAY=XAY=XAAYY=AYY=Y.

The unique solution of equations 3, 4, 5, and 6 was called by
Penrose the generalized inverse of the matrix A, denoted A* . A more
expressive term, pseudoinverse, is used generally in this text, although

the terms are used interchangeably. The symbol A , however, has

14



become standard. The conciseness of the Penrose definition, as well
as its relative historical priority, makes it well suited for use

as a criterion in comparing for equivalence some less susccinctly
stated definitions. Definitions due to Moore (interpreted by
Greville [49]), Zelen [90], and Frame [41] will be shown to be
equivalent by showing that the pseudoinverses defined by these

writers satisfy the penrose equations.

2.2 The Greville (Moore) Definition

Greville has developed Moore's definition of the pseudo-
inverse of a rectangular matrix by considering first an mxn (m > n)
matrix B of maximal rank. Since the colums of B are linearly
independent, the vector v = Bu vanishes if and only if u is a

zero vector. Therefore, uTBTBu = vTv > 0 whenever u # 0. Thus

BTB is positive definite and therefore nonsingular. The pseudo-

inverse of B is then defined as B' , where

Bt = &%) 18T . (1)
Note that this reduces to the ordinary inverse when m =n . For

m > n , the pseudoinverse is a left inverse of B , unique in the

sense that it is the only left inverse of B with rows in the row space
of BT. Similarly, the pseudoinverse of an m x n matrix C of

rank m is defined by

+

¢t = clecht . 2)

This is the only right inverse of C having colums in the column

space of CT .

15



Consider the general case of a nonzero matrix A whose rank
r may be smaller than its smaller dimension m . Let B denote
a matrix of r colums whose colums form a basis for the colum
space of A. Similarly, let C denote an r rowed matrix whose
rows form a basis for the row space of A. The pseudoinverses
of B and C are given by (1) and (2), respectively.

Before the pseudoinverse of A is defined, note that A

T

has a unique left identity matrix with rows in the row space of A" .

This is seen to be IL = BB" , for evidently

I,B = B (3)
and it follows that
LA = A (4

since each colum of A is a linear combination of the colums of B .

On the other hand, if IL is of the form XBT and satisfies (4),
it preserves every vector in the column space of A, and we have
T

XB'B = B. Thus X=B®B)" ,and I, = BB" . Sinilarly,

I, = CC (5)

is the only matrix with colums in the colum space of A which

satisfies the relation

AIR = A. (6)

It is easily seen that IL and IR are both symmetric and idempotent

as are 1 - IL and I - IR .

16



The pseudoinverse of any matrix A is now defined to be the
unique matrix At , which has its rows in the row space of AT and

its colums in the colum space of A? and which satisfies

+

AA=IL,A+A=I . )

R

We investigate the existence of such a matrix A by cases. In the
case of matrices of maximal rank it is readily seen that matrices of
the type B and C given by (1) and (2) above meet the requirements.
In the trivial case of the zero matrix A , if IL is taken to be the
square zero matrix, its rows are in the (null) row space of Ai and
its colums are in the (null) column space of AT, so that equations
4, 6, and 7 are satisfied if we take At = A? .

To show the existence of the pseudoinverse of the general non-

zero matrix A, we introduce the matrix H of order r, given by
H = B'AC” . (8)
Thus

BHC = BB'ACTC = LA, = A. (9)

Since the rank of a product does not exceed the rank of any factor,
(9) shows that H is of rank r, and therefore nonsingular. Finally,

we take

+

At = c'u!

: (10)

It is clear from equations 10, 1, and 2 that this matrix has its

rows in the row space of BT and its colums in the colum space of

17
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ct ; in other words in the row space and column space of AT .

Moreover, since by (9) we have

BHC = A
and by (10)
c'H'B* = A"
then
a" = maccHB = BB = I,
and
A'A = cule'mic = c'c =1

so that (7) ié satisfied.

The following proof of the uniqueness of A appears in
Moore's memoir. Suppose AI and A; are two matrices satisfying
(7) and having their rows and colums in the row and column spaces

of AT . Then

+, .+ +

M = Ty
But IR =c'c , and the colums of A; are in the column space of AT R
which is also that of C' , so that we can find a matrix X such that

A; = C'x. Therefore,

+ .+ + .+ +
AlAA2 = CCCX —Azo

Similarly,



+ . .+ + .+ + _+ +
AlAA2 = AZIL AlBB = YBBB = A1 ,
+ + + 4+
where A1 = YB , Thus A1 = A2 .

2.3 Equivalence of the Penrose and Greville Definitions

Equivalence is established by showing that the Greville pseudo-
inverse satisfies the Penrose equations. This technique implies
complete equivalence because of the uniqueness of the Penrose pseudo-
inverse. The Greville pseudoinverse is easily shown to be a solution

of the Penrose equations by recalling that

Where IL is a left identity of A and IR is a right identity.

Hence, in equation (1.3)

AMA = LA = A.

To show that A" satisfies (1.4) recall that A" has its colums in

the colum space of AT, which is also that of C' ; so that there

exists a matrix X such that. At = c'x Then,
AT = TAT = Ccoc’x = X o= AT

which proves (1.4). Since Greville discussed the Moore pseudoinverse
in terms of a matrix with real elements, (1.5) and (1.6) are satisfied
if (a7 = A" and @'Y = A*A . Recall from the Greville

definition that

19
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where B was formed from the linearly independent columns of A .

Also recall that B' = (BTB)'lBT so that

M =1, =88 = B@B) 1Bl .

L
Then
T = 17 = (3"B) 181"

= B[BBBj! 1T

B(B1B) 18T

= AA

Similarly, A'A = Ip = CT(CCT)'1 , where C is formed from the r
linearly independent rows of A , is symmetric so that
+

ataT = A'a.

2.4 The Zelen Definition

In investigating the role of constraints in the theory of least
squares, Zelen [90] finds it adequate for his purpose to develop the

pseudoinverse for the less general case of symmetric matrices only.




The result is that the Zelen pseudoinverse if a special case of that
of Penrose. As will be pointed out later, a single restriction on
the conclusion of Zelen's theorem will suffice to make all the

properties of the Penrose pseudoinverse hold for the pseudoinverse

defined by Zelen.

Theorem 2.2: If A isa p xp symmetric matrix of rank q,

q < p, then there will exist matrices H(p x 1) and K(p x r) such

that

T

H A # 0. 1)

Furthermore, there will exist matrices C1 pxp, Cz(p xr), and

C3(r x r ) such that

- T _1 - 1
A X c, ¢
= (2)
T T
K 0 C; Cg |

having the properties

(1) C1 is a symmetric matrix

(i) ¢ = CAC, , A=ACA

(iii) AG = I =k@K H (3
(v) ¢, = HKH™

(v) KC, = ¢ .

3

21
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Proof: Since A has rank q, there exist r (r=p - q)
linearly independent relations among ‘the rows of A. The nullity
of A is r. Thus, if H is formed by selecting as its columns
any r linearly independent vectors which form a basis for the null
space of A, then

MAH = ¢

but since A is symmetric,

HIA = o .

Let K have as its colums any set of r vectors which fom a basis
for the null space of A. To show that HK is nonsingular, let x
be any r x 1 vector and assume that HTKx = 0. Partitioning HT

into its rows hi we have that

hy h, Kx

h, h,Kx

| ok = =0 or hka =0, i=1,2, T
hhr- Lher-

Now AKx = 0 since each colum of K is a basis vector for the null
space of A. But AKx = 0 implies that Kx 1is a vector in the null
space of A, and Kx orthogonal to each hi implies that Kx = 0.

Now partition K into its colums, say, K = (k , k r). Then

1’ ° ° .
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X
Kx=(k1,...,kr) . =k1x14,-...+err=0..
bxr_J

But the vectors ki are linearly independent 50 that X] =Xy =..,.=
X, = 0 . Hence, HTK is nonsingular and has nonvanishing determinant
since HTKx = 0 implies x =0 for any vector Xx.

Since IHTKI # 0, the rows of k' are linearly independent of
the rows of A. This implies that for all vectors uT(l Xp) and

VT(l Xxr), uTA + VTKT = 0 and hence the augmented matrix

A K
. KL 0

has full rank. Using the relations of a matrix to its inverse

results in
A K o c, I, 0 o} C, A K
T T = =T T
K 0 C, Cs| [0 I C 0 K' 0
or
(1) AC, + KCI = I
1 2 p
(i) Klg, = o
(4)
(iii) AC2+KC3 = ¢
(iv) K¢, = I




24

Equation 4,i implies that
HAC, = HkC) = H',
but since IHTKl # 0, then
¢ = @
and upon taking the transpose of both sides we get

c, = HKH) 1

which proves (3.iv). Furthermore, substituting (3.iv) into (4.i)

gives
AC, +KC) = 1 .
ac, + kEOMr = 1 "
or
AC, = I - k@x) WY

1 P

which is exactly (3.iii). Now (3.iii) implies that

CiAC, = C

T -1,T
JAC) - CKEHK)H

1

and applying ClK = ¢ gives

thus the first part of (3.ii) holds. Similarly,




ac, = I -HEH H
inplies

ACA = A-HKH)HA = A,

since HTA = ¢, hence (3.ii). Now since

cg = @) Wt
then
T

A = HK) HA=0 ,

and by the symmetry of A,

By virtue of (4.iii), KC3 = ¢ , hence (3.v) is proved.

2.5 Equivalence of the Penrose and Zelen Definitions

From (4.3ii) the matrix C1 = A" satisfies the first two of
the defining equations of Penrose. In order to show that ¢
satisfies the last two Penrose equations, the matrix K must be
chosen to be H. This is possible since H and K have the same
dimensions and each is formed by having its colums to be any

basis for the null space of A. Under this requirement, (4.3iii)

becomes

Ac, = 1-HHM!
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and (4.3iv) becomes

T..-1
c, = HHW™ .
Then
ac)” = 11 - e N = 1 - HE'H) T - AC)

and CA=1 - CZHT so that

T = 1 - a1 - HEHH) T = A

2.6 The Frame Definition

The definition of the pseudoinverse given by Frame [41] grows
out of his discussion of the solution of degenerate linear systems.
Following Frame's example, we will explore in some detail his
development of the ''semi-inverse'' of a matrix and then modify it to
the ordinary pseudoinverse. The painstaking approach employed by
Frame gives some insight into the application of the pseudoinverse
to the method of least squares. It will be useful first to consider
some definitions and a theorem on the rank echelon factorization

of a matrix.

Definition 2.1: The distinguished colums of a matrix A

are the r nonzero colums, no one of which is a linear combination

of its predecessors.

Definition 2.2: An mxn matrix of rank r <m is a row

echelon matrix if its last m - r rows are zero, its distinguished
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colums are the first r colums of the unit (identity) matrix

I in order, and the 1's in these colums are the first non-

m b

zero entries in their respective rows. If m = r, there are no

rows of zeros and the r xn matrix is a reduced echelon matrix.

Theorem 2.3: Every mxn matrix A of rank r has the

row echelon factorization

A = B C
mn  mXr rxn

where the colums of B are the distinguished colums of A, and

C i_§_ a reduced echelon matrix.

Proof: Let Bi be the ith distinguished colum of A and
the ith colum of B. Then each colum Aj of A can be written

T
Aj = iil Bicij

where the constants of combination cij form the matrix C. Since
each colum of A that is not a distinguished column is a linear
combination of preceding distinguished columns, C has a reduced
echelon form.

The matrix L that converts the matrix A to the row echelon
matrix LA is the right-to-left product of the elementary factors

L L

2"°°’Lk;

L=Lk.,.L2L1,

1 ’




but it is usually unnecessary to write out these products separately.
Indeed, by row operating on (A, I) instead of A, we obtain (LA, L)
as the reduced echelon matrix so that if LA =1, then L = Al
appears as the right-hand block.

The system Ax =y 1is called degenerate if the mx n
coefficient matrix A of rank r is not both square and invertible.
Either many or no solutions exist. If the vector y = Ax is not
zero for any vector X, either y = Ax or some left multiple
thereof may still be minimized in length by some vector Xy» using

least squares, and the set of soltuions x (if any), or 'best fit"

vectors X will have the form
= +
X X ° Aoz

where AA =0, and z is arbitrary.

A matrix A, of rank n - r is called a complete right

annihilator of A if AA =0 It is the zero matrix if n = r.
Both the particular vector X, and a complete right amnihilator

Ao of A can be read from the partitioned echelon matrix (LA, L)
computed by row operations on (A, I) .

Let

where LZA is the (m - r) xn null matrix, and where LlA is an

T X n reduced echelon matrix,

28
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H

LlA = (I,VP = (I,V) TXT

The nxn matrix P is a pénnutation matrix with inverse

P* = (P;, P;) . Its upper r xn submatrix P, has as its nonzero
columns all the r distinguished colums of C which are the first
r colums of I. The rx (n-r) matrix V is formed from the
remaining colums of C. The rows of the lower submatrix P2 of P
are all the rows of the n x n unit matrix that do not appear in P ,

arranged so that

If r> 0, the mx r matrix

®

B=AP1

consists of the r distinguished colums of A, and A has the

. _rank factorization

*
A = BC = AP.L.A . 1)

The equations

* *
I=PP1-(P1+VP2)P

® ®
1 1= CP; = LAP, = LB 2)

1 11 1

*®
show that L is a left inverse of B and P, is a right inverse
*
of C. The nxm matrix PlLl = A° will be called the semi-inverse

of the matrix A.

29
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Before the semi-inverse is considered further, we digress to
point out incidentally that since LA=¢ ,a solution X, of

Ax = y can exist only if

L2y=L2Ax=0.

In any case, a minimizing vector that reduces the length of Lzy

is a solution Xy of Ll(Ax -y) =¢ and is given by

- * .
X, = PlLly .

Any right annihilator of A = BC also annihilates C = (I, V)P .
Hence it can be written in the form AOZ where
-V . -V
*® *® *

The solutions of Ax - y or nﬁnimizing vectors x for L(Ax - y)

are
* % * *
X = PlLly + (P2 - P1V)z

with 2z arbitrary.

Motivated by equation 1, Frame has stated the following definition:

Definition 2.3: A semi-inverse of an m x n matrix A of

rank r is any n xm matrix A® of rank r such that

ASA = A, (3)
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® -
If A=9 , A=A . If A is nonsingular, then AS = A 1 , Since

(3) implies ASA I =AA° . Note that both ASA and AAS are

idempotent since

(ASA)2 = AS(AASA) = ASA ,
and

2

(AR%) (AASAHAS = AA° .

From the above definition, it is clear that the pseudoinverse
is a semi-inverse since the Penrose pseuodinverse is included in the
set of solutions of (3). On the other hand, every semi-inverse of A

satisfies
ASAAS = AS
since from (1) we have

S x _ ok *
A"AA = PlLlAplLl

but since LlA = C, then from (2)

S..S * & * % * S

AAA" = PiL AP L = PiCPiL; = PiL; = A7 .
Thus the semi-inverse satisfies the first two Penrose equations.
We now have only to examine the circumstances under which both
idempotents AA® and APA are hermitian. The restriction on the
semi-inverse which accomplishes this is best pointed out in view of a

result proved by Frame [41, p. 220].




Theorem 2.4: Every semi-inverse A% of a matrix A#¢

with rank factorization A = BC has the form

AS = AVPM L N vy T

where CCN+ =1, N is nonsingular nxn, and
M - et (@' T - nawt

which is a right inverse of C, and where

8™ = M) B"MM = oBytM

a left inverse of B. The idempotents ASA and AA® have the form

AN o Me g aMM - g™
Now if
* % * %
ASA = e = et et e

then ASA is hermitian if N is chosen to be I , for then
nxn

asa=cech o= cfeech gt - @sny” .

Xk 1 k%
Similarly, AN = BB+M = B(B M MB) 1B MM 1is hermitian if the non-

singular matrix M is chosen to be I
mxm
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2.7 The Rao Definition:

The definition of the pseudoinverse by C. R. Rao [77], also
grows out of his discussion of the solution of degenerate linear
systems. His definition of a "generalized inverse' is given in

terms of a consistent system of linear equations.

Definition 2.4: A generalized inverse of a matrix A of

order mby n is a matrix of order n by m denoted by A", such that
for any vector y for which Ax = y is consistent, x =AYy is a
solution.

A generalized inverse so defined is not unique, however, for
many applications, as will be pointed out in Chapter 5 this is not
necessary.

The equivalence of definitions (2.3) and (2.4) is established

in the next theorem.

Theorem 2.5: If A is a generalized inverse of A by

definition (2.4), then AA'A = A, and conversely.

Proof: Choose y as the ith column a; of A. Then the

equation Ax = a; is obviously consistent and hence x = A°ai is

a solution. This implies that .I\A'si = a; for all i, which implies
that AA"A = A. Conversely, if A  exists such that AA'A=A and
Ax =y is consistent, then AA'Ax = AXx or AAy=y. Hence x=Ay

is a solution.




We now establish how the generalized inverse given by definition
(2.4) can be used to obtain the Penrose pseudoinverse. This is the

conclusion of the next theorem.

Theorem 2.6: A generalized inverse A  as given in definition
(2.4) can be constructed in such a way that A” = A", where A"

is the Penrose pseudoinverse of A.

Proof: Given A of order m by n, there exists nonsingular,
orthogonal matrices P and Q of orders m and n, respectively,

such that PAQ=D or A=P 'DQ "~ where

and DS is a diagonal matrix of order s and rank s. Define A~ =

QD'P where

Then it follows that AA'A = Pl = A, Also AAA = QDP =A™ .
. % -
Also, it is computational to confirm that (AA") = AA" and

- % -
(AA) =AA.

34



35

2.8 The Desoer and Whalen Definition

The following definition is an extension of the pseudoinverse
by Moore and Penrose, and is given from a range-null space point of
view. This approach is felt to be beneficial in that the definition
has a strong motivation, the concepts are illuminated geometrically,
the proofs are quite simple, the basis is eliminated, and the exten-
sion to bounded linear mappings with closed range between Hilbert

spaces is immediate.

Definition 2.5: Let A be a bounded linear operator of a

Hilbert space X into a Hilbert space Y such that R(A) is closed.

A" is said to be the pseudoinverse of A if

(i) A*'Ax=x forall x in N(A) = RQA") .

(ii) A'y =0 forall y in R(A) = N(A) .

*
(iii) If yje R() and yye N(A) then A'(y; +7y,) =

+ +
Ay, +Ay,.

Since every finite dimensional inner product space is a Hilbert
space, it will suffice to show that the above definition is equivalent
to the Penrose definition over such a space. Since (i) defines
A" on R(A), and (ii) defines A* on R(A), A" is uniquely defined
on Y = R(A) ® R(A). (i) implies that A*A is the identity map on R(A").




From (iii) we get AA"'(y1 ty,) = AA+y1 + AA+y2 = AA+y1 so that
MY is a projection operator on R(A). Also, if x = X; + X,

+
2) = A Ax1 *
+ + + . + .
AAxZ = A sz. But A sz =X, by (i). Hence, A A 1is a pro-

where X € N(A) and X,€ N(A)'L we have A*'A(x1 + X

jection operator on N(A) = R(A*) . To show that these are ortho-
. Y
gonal we establish that AA" and A*A are hermitian. Now (AA"') =

+% % * x 1

A A. Let x= X) * X, where X;€ N(A) and X,€ N(A ) , then
+_ R +% & +x % +X & . .
(AA)x=A A x; + A A X, = A A X,. But, (i) implies that

+% %

A A X, = X,. Now, AA+(x1 + xz) = M'x

+ +
1+AAXZ_AAXZ'XZ. Hence

* * +
(AA+) = AA", Similarly, it can be established that (A+A) = A'A.

36

interpreting the Penrose equation, AATA = A, implies that M =t

and thus that AA" is idempotent and hence a projection operator on
R(A). Likewise, A'A is a projection operator on N(A). The fact
that those operators are hermitian implies that they are orthogonal
projections and thus the Penrose equations could be written more

compactly as

Pr(A)
1)
+
where PM is an orthogonal projection on M.
Since the equations in (1) are equivalent to those in the Desoer

and Whalen definition for finite dimensional Hilbert spaces, and also

equivalent to the Penrose equations in that case, it follows that

Definition 2.5 is equivalent to Definition (2.1) in that case. It might

be pointed out that equations (1) are essentially those given by Moore

in defining a pseudoinverse.
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2.9 The Chipman Definition

Before giving this definition we define what is meant by

complementary matrices.

Definition 2.6: Two matrices X and Y are said to be

complementary if the following two conditions hold:

(i) X and Y both have k colums, and rank X + rank

common.
Then Y is said to be complementary to X, and vice versa. Further,
X and Y are said to be polar if condition (ii) is replaced by the
stronger condition
Gi) XY = 0.
(the prime indicating transposition).

This states that the row spaces of X and Y are orthogonal.

Condition (ii) can be written formally as follows: uX + vY = 0
implies uX = v¥ = 0. Thus no row of Y (or linear combination thereof)
can be linearly dependent on the rows of X, and vice versa. Condition
(i1) is implied by condition (ii'), since uX + vY = 0 and

XY' = 0 imply

]
VYY'V' = (uX + vY)Y v' = 0

]
and since vYY v' is a vanishing sum of squares it follows that vY = 0

’




hence uX = 0. Every matrix X has a polar matrix Y (this does not
exclude the possibility that Y is the empty 0 x k matrix, or any
null matrix with k colums, in case X has rank k); a fortiori,
every matrix has a complementary matrix.

For definiteness, let X be nxk of rank p, and let Y be

mx k of rank q, where p+ q = k. Let the row spaces of X and

Y be denoted X = {¢]€ = aX} and V¥ = {n|n = cY}; they are of dimen-

sion p and q respectively. Every such matrix X possesses a
complementary matrix Y, for any m > q; for let B = {b'l Xb = 0}
be the q-dimensional colum null space of X. Then an m x k matrix
Y can be chosen so that its rows, together with those of X, span
X+B=X+ ?, and so that none of its rows are in 35; then Y is

complementary to X. If the rows of Y are in B, then B=Y and

Y is polar to X.

Lemma 2.1: Let X and Y be complementary matrices. Then

there exist matrices A and B such that XB =0 and rank YB =

rank Y, and YA =0 and rank XA = rank X. Moreover,

xxx+yn ' =o0.

Proof: Let X be nxk of rank p, and let Y be mx k
of rank q, where p+ q=k. Define v=n-p and u=m- q.
Without loss of generality, let the first p rows )(1 of X have
rank p; then the last v Tows XZ of X may be written X2 = le’
where N is v x p. Similarly, let the first q rows Y1 of Y
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have rank q; then the last y rows Y2 of Y may be written

Y2 = MYl, where M is uxq. Since X and Y are complementary,

the rows of X1 and Yl form a basis for X + ?, and we may define
-1

X

(A, B
Y

where A and B1 are k xp and k x q respectively. Then

1 A X8y L, 0

Y, YA, Y;B 0 1

Now define the k x v and k x y matrices A2 and B2 by

1 T

A2 = AlN B2 = BlM

so that we have

>
[

A, A) = A1, N1 , B B

P 8

1

= B, [I_M

1 B p [ M]
where A and B are respectively k xn and k x m. From these

relations we obtain
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-11 —I N"
P ' P

XA = X, A [IpN] = '
N [N NN |
1] 0 0
p '

XB = X; By [IqM] =
N | 0 0 |
(1 ] K 0 ]
q '

YA = YlAl[IpN] =
M 0 0 |
r 1 - t 7
I I M
q ' q

YB = Y, B [IqM] = '
M | M M |

where rank XA = p = rank X, and rank YB = q = rank Y, proving the
first part of the lemma.

To prove that X(X'X + Y'Y) Iy’ o 0, first we note that the matrix
W = [?] has rank k (since X and Y are complementary), whence
Q= W'W = X'X + Y'Y is positive definite and therefore invertible.

From the first part of the lemma we have

I M
[ ' ' '
XX+YV)B=YYB=Y [I M]

t ' - -
Premultiplying by X(XX +Y Y1 = XQ'! we obtain
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-1.!

0= 8 =X Y = Xy (I M)

Ml\rM'J

implying XQ'lY, (I +MM) =0. But I+MM is positive definite,
]

1

- 1 - 1
hence nonsingular, so XQ 1Y X(X'X +YY) 1Yl = 0, therefore

Xxx+YnY = xxx+«ynhy oMl o= o

In many practical cases one will have m = q, in which case
the proof of the above lemma becomes greatly simplified, since YB = I .

We now state the definition given by Chipman [24].

Definition 2.7: Let X+, A" be nx k, k x n matrices

satisfying the equations in theorem 2.1, and let U, V be given
symmetric positive definite matrices of orders k and n respectively.

Define X = V2 x* uV/2 ang A =ul/2 At vV/2

Then
(i) XAX = X
(i) AXA = A
ai) T’ = vixav M)
av) @t = v1iawu

If U= Ik and V = L this definition is obviously equivalent
to that of Penrose. We shall denote the unique matrix A satisfying

the above by A = X' for given U and V.
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The following theorem provides an alternative proof of the

existence and uniqueness of the pseudoinverse of a matrix.

Theorem 2.7: Let X and Y be complementary matrices, and

define the matrices

_ 1
= x'x+ynk
1 r _1 0
Yo = x+vYp .
Then
(i) X' and Y' satisfy properties (i), (ii), and (iv)
of Theorem 2.1, and property (iv) of (1) with
v=Ql=uxx+yymnl.
(ii) X# and Y# satisfy property (iv) of (1) for any
1
given U, if and only if XUY =0 .
(iii) In order that X# (resp. Y#) be unique for any
given U, it is necessary and sufficient that Y
(resp. X) satisfy XUY' =0 .
Proof: i. Defining W = [;], we have
' - ' [ -
W= mw o= x'x Yy Ix'Y') = vt
whence
wh = xPxs vy -1 (2)
# ' ' -1 #o1 .
From lemma 2.1, XY =X(XX+YY) Y = (YX') = 0, so successively

premultiplying (2) by X and Y, and postmultiplying by X# and Y#,




properties (i) and (ii) of Theorem 2.1 are verified for X and Y.
Properties (iv) of Theorem 2.1 and (iv) of (1) are immediately

verified, the latter with U = Q-1 .

ii. Now we show that X#XU and Y#YU are symmetric if and
only if XUOY =0. Since Q=XX+Y'Y is symetric, X XU =
QX'XU is symetric if and only if Qx'xuqQ = X'XWQ is symmetric.
This in turn is equivalent to the condition that X'XUY'Y = Y'YUX'X,
which is clearly also necessary and sufficient for the symmetry of
Y#YU. (In the case U = I, this simply states that X#X and Y#Y
are symmetric if and only if X'X and Y'Y commute.) Now

'

XUY =0 implies X XUYY = 0=Y YUX X , so the condition XUY = 0

is obviously sufficient.

t

To see that it is also necessary, observe that X# XX-=

1
(XX#) X = XX#X = X from (iv) and (i) of Theorem 2.1, and similarly

1 # | # 1 1 #' 1 t

YYY =Y (YY) =YY Y =Y .

Therefore

1 ] 1 !
XXUYY = YYUXX
implies
xwy' = x"xxor'w? = 3y yox'xy® = o

. A ' oy -1y #
since X' Y =XXX+YY) Y =XY =0 from lemma 2.1.
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iii. It is clearly sufficient to show that X# is unique if

and only if Y satisfies XUY' = 0., Let Yl and Y2 be two
matrices both complementary to X, with row spaces Yl and ?2

1 - t
respectively. Define Qi = X'X + YiYi and Xg =Q lx for

i =1, 2. In order that Xi = X; it is necessary and sufficient that

' -1 1 -1, 1 -1 ' -1t LI A0 '
X = Qle X =X )(Q2 X + Y1Y1Q2 X . But X XQ2 X =X X2 X =X
from property (i) of Theorem 2.1, so this is equivalent to

t - ] t
Y1Y1Q2 1X = 0. Premultiplying this last equation by Yi , and

t
recalling that Yi Y1Y1= 1 from properties (iv) and (i) of Theorem

1 1
2.1, we obtain YlQ2 lx = leg = 0 as a necessary and sufficient
# # #

condition that X' = XZ' Now Y2X2 =0 from lemma 2.1, so Yy and

Y2 (which have the same rank) must both be orthogonal to Xg " (as well
as to X’{' by a similar argument). Thus uniqueness is equivalent to
the condition ?1 = ?'2, which is guaranteed when Y1 and Y2 are
both polar to X, in which case ?1 = ?2 =B (the colum null space
of X).

It remains to be shown that the condition Yl = ?2 is in tumn
equivalent to the condition that Y, and Y, both be orthogonal to

] t
XU, i. e., that Y;UX =0 and Y,UX =0. Let X! satisfy (iv)

1 2
. ]
of (1) for some U; then by assertion ii of the theorem, Y2UX =0,

and we also have

# ] !
YIXZXUX = YlUX X2

1
whence leg = 0 implies Y,UX = 0. This proves the necessity of the




' ‘ 1
condition YUX 0. For the sufficiency, assume first that Y,UX = 0,

2
whence Xg satisfies (iv) of (1) by assertion ii of the theorem; then

using property (ii) of Theorem 2.1, we obtain

g _
=YUXX#U1X§

# #o
272 177 2

Y.X, = Y, X

1% = 1) XXX

t
whence Y1UX = 0 1implies leg = 0, which was to be shown.

We may conclude with a number of remarks concerning this theorem.

Remark 1. The special case of greatest interest is that in which
U= 1. Then the symmetry of X‘X, which is the cquivalent to the
commutativity of X'X and Y'Y, is in turn equivalent to the ortho-
gonality of X and Y. The condition that Y satisfy XY' =0
is just one way to obtain uniqueness; the essential property is that '
X# is unique with respect to a choice of Y as long as the rows of
Y are such as to span a given space Y which is complementary to X.
This is accomplished equally well by the condition XUY ' 0, 1i.e.,
that Y be orthogonal to XU. The Moore-Penrose pseudoinverse of X
can therefore be defined as the matrix X = (X'X + Y'Y)'lx' , where
Y is any matrix polar to X. It has the special property that
YX' =X = 0, whence the column space of X" is the same as the row
space of X. On the other hand if YUX' = YX# =0, then X is

1
orthogonal to YU but X# is orthogonal to Y, so the colum space

of X# is tilted away from the row space of X.
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Remark 2. If V and W are any symmetric positive definite
?
matrices of orders n and m respectively, and if XUY = 0, then

the matrices

#

| . - - L.
X' = x v+ YwilyIx'vl

1 1

Ye x'vix s Ywlny 'y

satisfy (1) with W replacing V in the case of Y#. This follows

1/2

immediately by applying Theorem 2.7 to the matrices X = V'*/°X and Y =

wl/2y

Remark 3. Theorem 2.7 could just as easily have been established
in terms of some n x q matrix W or rank v =n - p, such that
[W X] has rank n. Then P = WW' + XX' has full rank, and the matrix
X'(WW' + XX')_]‘ is the generalized inverse of X satisfying (i), (ii),
and (iii) of Theorem 2.1, and (iii) of (1) with V = p°1 .
If WX=0 and XY =0 then X (W +Xxx)1=x*=c'x+vv k.

For the special case k=p and q=v, [W X] is itself invertible.

Remark 4. Since XX# is idempotent of rank p and YY# is
idempotent of rank q, if X is nxk of rank p = n, then

xxt = X(X'X + Y'Y)"lx' = Ip; and if Y is mx k of rank q = m, then

' -
Y(X X + Y'Y) IX' = Iq. These formulas are useful in applications.
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Other formulations of the pseudoinverse of a matrix have appeared
in the literature. A formulation due to Scroggs and Odell is given
special attention in Chapter 4. Other formulations not included in
this chapter will possibly be covered in the properties of the Penrose
pseudoinverse or where felt to be so closely related to one of those
given to merit not being duplicated. From reading this chapter one
might see how to modify the formulations of the pseudoinverses given

to meet his own needs.




CHAPTER 3
PROPERTIES

3.1 Elementary Properties of N

In this section many properties of the Penrose pseudoinverse of a
matrix are given. More elegant and shorter proofs may be obtained in
some cases by working with the Desoer and Whalen definition of the
pseudoinverse which is given from a range - null - space point of
view, however, an attempt is made here to keep this section on as
elementary a level as possible so that the results will be compre-
hended with a minimum of preparation and effort.

We now list two properties of the conjugate transpose of a

matrix which will be used frequently in establishing properties of A*.

a) If A and B are matrices such that AB is defined,
* * *®
then (AB) =B A

X &
b) If A is a matrix, then (A) =A.

Theorem 3.1: For any matrix A, the matrix correspondence

A > A" satisfies the following properties:
P1) (A) = A.

Proof: By Theorem 2.1, for the n by m matrix A" there
exists a unique (m by n) matrix (A+)+ that satisfies the

following identities:
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A+(A+)+ At = A+

(A+)+A+ (A+)+ = (A+)+

@M = ataht
[(A+)+A+]* - (A+)+A+

However, replacing (A)')+ by A in the above identities,

they become the four defining identities given in Theorem 2.1.

Since the matrix X in Theorem 2.1 is unique, it follows that

A=(@H*.

p2)  (AN*= ¥ = Atz a™

Proof:

*
By Theorem 2.1 for the matrix A , there exists

*
a unique matrix A satisfying the following identities:

% + % %
However, A (A') A

* % *
also (A+) A (A+)

X k. %
AA) A=A

*
@hH* At @t = N
X x4 EE
A" AN *)= A"

X 4 k. % X 4 %
(At AY" = ahH*a

4+ *
(AA'A)

x
A

@tanhy”

+_®

(A)

Prope ;ﬁy a of

Theorem 2.1

Property a of

Theorem 2.1

*
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. . . s LN + % %
Likewise, the identities [(A) A] = (A) A and

x4 % % X 4 % .
[A(A)] =A(A) can be verified. Hence, due to the uniqueness,

it follows that (A")" = (a%)" .

+ % ®
P3) AAA = A

* x %
Proof: A'AA = (A+A) A Theorem 2.1
+ . * &
= (AA'A) Property a of
*
= A Theorem 2.1
x4 *
P4y AAA = A
* 4 * + %
Proof: AAA = A (AA) Theorem 2.1
+ R : ®
= (AA'A) Property a of
*
= A Theorem 2.1
* *
P5) AA'AT = A"
X *
Proof: AA'FA'H“r = (AA+) At Theorem 2.1
+ +. K *
= (AA) Property a of
*
= A" Theorem 2.1
®
p6) AT A*A = A
* *
Proof: A+*A+A = A (A+A) Theorem 2.1
+ +. % *
= (AA) Property a of
13
= A" Theorem 2.1




®ye X
P7) A AA = A

*y X +. % *
Proof: A 'AA = (AA)A Property a of
= M Theorem 2.1
= A Theorem 2.1
* Xy
P8) AAA = A
® % + % *®
Proof: AAA = A(A'A) Property a of
= AA+A Theorem 2.1
= A Theorem 2.1
* *®
P9) AATAY = At
* ® * ®
Proof: A AT At = (A+A) A" Property a of
= A+AA+ Theorem 2.1
+
= A Theorem 2.1
% %
P10) A'AYA" = A"
x & *
Proof: AATA = A" (AA+) Property a of
= A+AA+ Theorem 2.1

= A Theorem 2.1
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+ + %y

3 * %*
P11) (AA)" = A"A" and A A" = aA*A

*
Proof: By Theorem 2.1 there exists a unique matrix (AA )+

satisfying the following identities:
X k4 % *
AA (AA) AA = AA
% X % *
) A @)’ = @a)?
. . ® AA% AA* +
+ =

[AA(AA)] (AA )
X 4+ %k X 4+ R
[(AA) AA] = (AA) AA

*
It is computational to confirm that replacing (AA )+ by
*
A""A"  in the above yields identities. Hence by the uniqueness
*
of (AA )+, the first conclusion follows. The second result is

established in a similar manner.

X 4 ®
P12)  (AA) (M)

= AA
E 3 * * *
Proof: (AA)'AA = AYA*AA P11
*®
= A" p3
®
= (AA?) Property a of
= mh

P13) If o #0, then (ad)t = o 1A% .

1

Proof: Direct substitution of o "A’ into the four defining

equations for (aA)+ establishes this result due to the uniqueness.

p14) o' = of



T

Proof: For any size null matrix O, O° satisfies the

defining equations for o' given in Theorem 2.1. Hence by the

uniqueness of 0%, 0" = of .

P15) If D= (dij) is a square diagonal matrix, then

+ + + . . +
. _ + _ -1 .

Proof: D' as given satisfies the four defining equations

in Theorem 2.1 and hence is the unique pseudoinverse of D.

P16) If A = BC where the colums of B are linearly
independent and the rows of C are linearly indepen-
+ Xk ] k___] % .
dent, then A" =C (CC) "(BB) "B . In particular,

3 %* *. _
if B=C, A'=C(cC)®C and A*A = A" .

* * . * .1 =%
Proof: It is computational to confirm that X = C (CC ) 1(B B) 1B
is a solution of the four defining equations for A" in Theorem 2.1.
+

Hence, by the uniqueness of Af, X = A . The second part follows by
y q

direct substitution also.

X _1 %
P17) At = (A A 1A if the colums of A are linearly
independent.

Proof: Follows immediately from P16.

* .
P18) AT = A*(AA ) 1 if the rows of A are linearly

independent.

Proof: Follows immediately from P16.
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P19) A" = Al oif A s square and nonsingular.
xRk _ x *q _ -
Proof: By P18, A* =A"(aa")! = A"A Al = Al

P20) If A" commutes with some power of A and A

is any nonzero eigenvalue of A corresponding
1

to the eigenvector x, then A~ is an eigen-

value of At corresponding to the eigenvector x .

Proof: Let A" commute with A" for some integer n > 0,

and let A # 0 be an eigenvalue of A corresponding to the

eigenvector x so that

A = X,
x = Al ,
and
ATA = AT
Then
A'x o= a7lATAax
= 2A*a%
= 2PATA%
1

by repeated substitution of A “Ax for x .

Thus
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A'x = A MaMa*x
= AP lamatay

= A'n'lAn'lAA+Ax

| A-n-lAn-le

31 A Al

= k.

Note that this result could be slightly strengthened by
replacing the hypothesis that A" commutes with some power of

A by A+An+1 = A2 for some =n .

*
P21) The row space of A* and A are identical. Also

*
the colum space of A" and A are identical.

Proof: To establish these results we make use of the fact
that if A and B are such that AB is defined, then the row
space of AB is contained in the row space of B and the colum
space of AB is contained in the colum space of A. It follows
that the row space of A+A+*A* is contained in the row space of A*.
However, A+A+*A* = A" by P10, thus, the row space of AT is
contained in the row space of A*. Similarly, the row space of
A*AA+ is contained in the row space of A*. But, A*AA+ = A*
by P4. Therefore, the row spaces of A" and A* are identical.

A similar argument using the equations in P9 and P3 establishes

*
that the colum space of A" and A are identical.



*®
P22) A, A" and A all have the same rank, Tr(A) .

Proof: Using the fact that the rank of a product is at
most the rank of any one of the factors, we have that
r(AA'A) < r(A") . But, AA*A=A so that r(A) < r(A") . Hence,
+ LR . LR
r(A) = r(A). Also r(A) =R(AAA ') since by P8, A=AAA .
® Ry * R ®
But r(AAA ) <r(A). Hence, r(A) <r(A). Now r(A) =
® 4+ . * L o+
T(AAA') since A =AAA by P4, But r(A AA) <r(A) . Hence,
x %
r(A) < r(A). It follows that r(A) = r(A) .

P23) Let A and B be any matrices with the product AB

+

defined. Let B 1

+ + .+
(AB) = BlAl .

+
l—AAB and A1-AB1B Then

Proof: The product AB can be written as

+ +
AB—AAAB=AB1—AB1B1B1—A1B1 .

Let Y=AB = A1B1 and let X = BIAI . Then it is only necessary to

show that Y and X satisfy the equations in Theorem 2.1. From

+—

et + _ +
the definition of A, we have that AlBlBl = ABlBlBlBl = Al .
+ .+ + . s + .+
Now YX = AlBlBlA1 = AlAl is hermitian. Also YXY = AlBlBlAlAl 1=
+
AlAlAlBl = AlBl =Y and

+ +

+ .+ +, .+ + + .+
XYX = BlAl(AlBlBl)Al = BlAlAlAl = BlAl =X.
In order to show that XY is hermitian, we observe first that using

the definitions of A1 and B1 that
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+ + + + + + +, 4+ +
AAl-AABlBl—AA(AAB)Bl-AABBl-BlB1 .

+
131

A,IA1 Substituting A+A1 for BlBI gives

Also, since AIAlBlBI AlAI, with both AIA and B

P + +
hermitian, BlBlAlAl

+ + + + + +
A1A1 = AAlAlAl = AA1 and so AlA1 = BlBl .

. . + .+ + 4+ +
From this it now follows that XY = BlAlAlB = BlBlBlBl = BlBl

is hermitian. Since it has been shown that Y and X satisfy the

defining equations for the Penrose pseudoinverse, X = Y' . But

+ +
X = BlAl.

* * * *
P24) If AA=PDP ,where PP =PP=1, and D is

. + + % %
diagonal, then A = PDP A .

* L x4 * 4
Proof: Suppose AA=PDP , then (AA) = (PDP ) .

* *
Letting X = PD'P  in the defining equations for (PDP )+ we have

X 4+ k% +® *
PDP PD'P PDP = PDD'DP = PDP |,

® ® x * *®
PD'P PDP PD'P = PD'DD'P = PD'P ,

57

+ % *_ % + K% + Kk % + & + % *
[pDPPDP] =[PDDP] =P(DD)P =PDDP =PDP PDP |,
and
® 4+ % % + R_* + % % + X ® 4 %
(pDP PDP] =([PDDP] =P(OD)P =PDDP =PDPPDP .
* *
Hence o )t = PD'P
and thus

13
@t = e’ .
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+ k4

®
Multiplying by A and noting that (A*A)+ = AA by P11 we
have

® * %
A'TATAT = pD'PA .

But by P2 and P10 the left member is A" . Hence the conclusion that
R R
A" = PD'PA .
*
P25) If A= ):Ai, where AiA; =0 and Ai‘A‘j = 0 whenever
i# j, then

+ +
A - ZAi 4

* *
Proof: Assume AiAj =0 and AiAj = 0 whenever i # j.
. + LS + + +% k.
Then, since Aj = AjAj Aj and A; = A;A; A, it follows that

A;Aj =0 and AiA; = 0. This implies that all the cross product terms

in A" are zero, and thus M = ):AiA; s A*A = }:A;Ai . Hence,

by direct computation the four defining equations for A" are found

to be satisfied by ZA; . By the uniqueness of A" we have that

+ +
A - ZAi .

P26) If A is normal, A*A = A" and (AT = @H".

x *x ky ®
Proof: By P10 A'A"' A" = A" . Applying P2 to this gives A'A 'A = A"

X 4 % + . . * *

and P11 gives (A A) AA=AA. Also, since A isnormal AA = AA

* ® * * *® *

so that A'A=(aA)"MA". ByPll (M) =A'A" and A A* = 4"
. +* 4 + LIE

by P2. Hence, since A' AA=A by P6, we have AA=A AAA =

* %
ATA = (AA+) = AA" . To establish the second part we note that the



first part implies that (A+A)n = An(A+)n = (A"')nAn . Direct
substitution of (A*)™ in the defining equations for (A")* yields

the desired result.
. . + .+
P27) AB =0 if and only if B A = 0.

Proof: Assume AB = 0 . Premultiplying by AY and post-

multiplying by B* we get A'aBB* = 0. Taking conjugate transposes,

& *
38" (aA*A)" = BB'A'A =0 . Multiplying by B* and A’ on the
left and right, respectively gives B*'eB*A*AA* = B'AY =0 .
Conversely, if B'A* = 0 we have that BB'A'A = 0 and thus

] ®
(A*'A) " (BB")" = 0 which implies A'ABB* = 0 . Hence AA'ABB'B =

AB =0 .

P28) Let A be an mby n matrix, and x any n-component

colum vector. Then
. . * 4+
AxX = 0 if andonly if x A = 0.

Proof: Assume Ax = 0. Then A'Ax = 0, which implies that
LN *x 4 . + '
x (AA) =0 or xAA=0., Miltiplying by A we bet

+

* 4+ + * . * 4 * 4+
XAAA =xA =0. Conversely, if x A 0, then xAA=0

* *®
or x (A'A)" = 0 which implies that A'Ax = 0. Multiplying by A

yields M'Ax = Ax = 0.
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*x *®
P29) If U and V are unitary, (UAV)' = VAU .

x4 %
Proof: By direct substitution of V A'U"  in the four

defining equations for (UAV)+ we obtain the desired result.

P30) If P is hermitian and idempotent, (PA)* = Q'P

whenever either PQ = Q or P commtes with

Q, Q'Q and '.

Proof: By direct substitution into Theorem 2.1.

P31) Let C be a square matrix in Jordan canonical form.
(C - uD)(C - u)*x = 0 if and only if x is an

R —
eigenvector of C corresponding to the eigenvalue u.

Proof: Assume (C - ul)(C - uI)+x = 0. Since
X = R(C - ul) ® N[(C - uI)+] we can write x = X; *+ Xy where
x,€ R(C - ul) and x,e N[(C - uI)"]. Then (C - ul)(C - uI)“(x1 + X))
x, = 0 sothat x=x,. Now N[(C-uD)'] = N[(C - un’ -

N[C - uI].

*  _ * -
Hence (C -ul)x=0 or Cx=ux .

* — *
Assuming the converse, we have that Cx =ux or (C - ul)x = 0.

®
This implies that xeN[(C - WI)] = N[(C - uI)*]. Hence

(C-ul(C -uD)'x=0.
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P32) Let {Ai}, i=1,2, ...,k be arbitrary mby n

matrices. Then

k k
T, + T
A. - A T A.A. T ALA. = (
1 1(J=1JJ)(j=IJJ)
forall i=1,2, ..., k.
kg
Proof: Let S = ¢ A.A. and consider
j=1 J )
ATA. - S'SA’A.. Since S i 1, s*s =sst
Ay sA;. Since is normal, =

and thus we can write
*® + *x *x + %
Now SS° is an orthogonal projection on the range space of S which

* * *
contains the range space of AiAi . Hence, SS*'AiAi = AiAi s SO

® ®
that AiAi - s's AiAi = 0. Taking the conjugate transpose of both
®
sides of this equation and using the fact that if AB = 0 with

the colums of B in R(A), then B = 0, the result follows.

P33) Let A be an mby n matrix, m>n, then

+, _ .m-n _ At
|A1m-AA|—>. [T, - AA.
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Proof: First we give a simple proof for the case m = n.
Let the zeros of Iun - A'A| be distinct, say Mo oo s A
If 2=0 is an eigenvalue of A*A it is an eigenvalue of AA* ,
since |ATA| = |AA*|. For N # 0, x; #0, it follows
from AJ'Axl = )‘lxl that Axl # 0. Hence AA+AX1 = Alel,
so that /\1 is an eigenvalue of AAY. Thus every eigenvalue of
A'A is an eigenvalue of At , and the result holds for m = n.
If multiple zeros of |>\In - A'A] exist, one need only add small

quantities to the elements of A and A" such that the zeros

of I)‘In - A'A| separate and become distinct. Thus

1AL, - A()A"(e)| = M - AT(e)A(e)| with A(0) = A,
A+(o) = A" , and ¢ represents a set of small elements.

From continuity considerations the result holds for m = n.

We consider next the case m> n, or m=n + p,
p > 0. Let M be the augmented matrix M = (A, ¢1) with

¢; the mxp null matrix, and let

- -
+

A




with ¢ the p xm null matrix, ¢ = ¢§. Thus, M and N are square

matrices of order m. It follows that
|AL - MN| = | - NM|. (1)

One notes that

+ + +

= A = + = A = A A ¢
Hence (1) becomes
+ _ _ + = m-n _ +
| IxIm-AAl = M - AA 4] ATTIAT - ATA|
AL
7 p

which concludes the proof.
It should be noted that P33 holds for the more general case where

A" is replaced by any n x m matrix.
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P34) The following conditions are each necessary and sufficient for

()" = B*A" .
+ k& ® X + % *
1) A'ABBA =BBA and BB AAB = A AB
+, % * ot ‘s
2) Both A'ABB and A ABB are hermitian
+ * % + R *®
3) A'ABB A ABB = BB AA

x %
4)  AA =0, BB =0 where

B

[}
&
w'l'
Ny
[}
>
W

[}
>+
&
=

1
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If A and B are otherwise arbitrary matrices such that AB

is defined, (AB)+ = B'A" if and only if both the equations

+ k& xR

A'ABBA = BBA (2)
and

* *

BB'AAB = A AB (3)

are satisfied.

e PR x * . 4
Proof: Multiplying A ABB A = BB A on the right by (AB)
. + % ® 4 ® * Ky Ry ® .
and using CCC =CCC =C, and CCC =C CC =C, in the
form

*4

(AB) (AB)" (AB)

AB ,

gives
* *
B'A'AB = (AB) (AB) '= (AB)"(AB) . )
Similarly, taking transposes of both sides of (3) gives
X x4 R
BAABB' = BAA,
and then multiplying on the right by A" and on the left by (AB) e

. + X * 4 * x Ry Ry %
and using CCC =CCC =C ,and CCC =C CC=C, leads to

the equation
ABB*AY = AB(AB)' . (6)

Recognizing that (AB) (AB)+ and (AB)*(AB) are the orthogonal

®
projectors on the range spaces R(AB) and R((AB) ), respectively,
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(4) and (6) express the fact that B'A" is the generalized inverse
of AB, as defined by Moore [66].
Conversely, (AB)+ = B'A" implies

X X X %
BA = B'A'ABBA .
. . * . x _+ * .
multiplying on the left by ABB B and using B BB =B gives
* + * %
ABB (I - AA)BBA = o,

where 6 denotes a null matrix. As the left member is Hermitian and

I-A"Ais idempotent, it follows that
+ x &
(I -AABA = o9,
which is equivalent to (2). In an analogous manner, (3) is obtained.

%* ®
P35) (AB)" = B'A" if and only if both A'ABB® and A ABB'

are Hermitian.
*
Proof: If A'ABB is Hermitian, we have
*® *®
A'ABB = BB A'A ,

*
and multiplication on the right by A gives (2). Conversely,

®
multiplication of (2) on the right by A * gives
] ®
A'ABB A'A = BB A'A . )

Since the left member of (7) is Hermitian, the right member is also.
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In a similar fashion it can be shown that (3) is equivalent to
*
the statement that A ABB® is Hermitian.
It will be noted that an equivalent statement to the condition

® *
in P35) is that A'A and BB commte and also A A and BB' commute.

P36). (AB)" = B'A* if and only if

PO I x %

A ABB AABB =BB AA. (8)

Proof.: Multiplying (8) on the left by A*A gives

i X X E

A"ABB A ABB® = ATABBAA . (9)
Combining (8) and (9) gives

+ k% x &

A'ABBAA = BBAA,

and multiplication on the right by At gives (2). An analogous
process leads to (5), which is equivalent to (3).
On the other hand, if (2) and (3) hold, multiplying (2) on the
right by A and then using (5) to transform the left member gives (8).
Equations (2) and (3) have a simple interpretation in terms of
range spaces. They assert, respectively, that R(A*) is an invariant
space of BB* and that R(B) is an invariant space of A*A. In
some particular cases this interpretation leads to a characterization of
those matrices B that satisfy (AB+ = B'A" for a given A.  For example,
if A is of full colum rank, A'A=1 and (2) is immediately satis-
fied. Then (3) holds if and only if B is a null matrix or R(B) is

*
the space spanned by some set of eigenvectors of A A .




P37). (AB)+ = B'A" if and only if both the equations
A'AB = B(AB)'AB | (10)
and
B*A" = A" aB(aB)* (11)

are satisfied.

x
Proof: Multiplication of (2) on the right by (AB) * gives
]
(10), and conversely multiplication of (10) on the right by (AB)

gives (2). Similarly it can be shown that (11) is equivalent to (5).

P38). A necessary condition for (AB)+ = B'A" is that

A+A and BB+ commute.

Proof: Substitution of B'A" for (AB)' in (10) and multipli-

cation on the right by B* gives
A*aBB® = BB* A" ABB' .

As the right member is Hermitian, the conclusion follows.

That the condition of P38) is not sufficient is clear from the

example:

1

As A is nonsingular, A'A =A"'A =1, and the condition is fulfilled.
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It is easily seen that the commutativity of A'A and BB'

is equivalent to either of the conditions

® ®
A'aBB* A° = BB A

and
BB" A* AB= AT AB .

These equations can be interpreted as asserting that R(Af) is

tﬁe direct sum of a subspace of R(B) and a space orthogonal to

R(B) and that R(B) is the direct sum of a subspace of R(A*) and -

a space orthogonal to R(A*). These observations reveal something

about the structure of matrices A and B that satisfy (AB)+ =B8'A%. It
is easily seen that (2) and (3) are equivalent to the following

two equations:

i
@
o

®
(I -AA) B A" A (12)

®
(1 - BB%)A ABB"

[
@

. 13)

Equation (12) shows that if B 1is resolved into the two component
matrices,
+

+
B1 = A AB B2 = (I-A AB,

* ]
then not only do we have BB, =6 as expected, but also BB, =9.
*
Similar remarks apply to the resolution of A into

® ® 3
AI = Bt A A, = (1-BBOA .
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3.2 Representations for the Pseudoinverse of a Partitioned Matrix

Let A= (A_, &) where a_ is the k™

colum of A and A1
is the submatrix of A consisting of the first k-1 columns.

+ .
Let dk = A k_lak aIld Ck - ak - Ak-ldko 'Ihen

where

+ .
Ck if ck#O

a+dd)laa if ¢ =0
4 T Ay X

It is computational to establish that this form of A" satisfies the
four defining equations in theorem 2.1.
The form of A’ will now be extended to obtain representations
for the pseudoinverse of matrices A = (U, V). We begin by combining
(1) and (2) into a single expression.
Since ¢, is a single colum vector, ¢ # 0 implies c; = (c;ck)'lc;
and thus c;ck = 1. Further, Cx =‘ 0 implies c; =0 and c]:ck =0,

Then we can rewrite b, as

b = o+ (- cxe) (+ qa) ™t dar (3

and obtain a single expression for the cases = (0 and #0 in (2).
8 k %k




Combining (1) and (3) then gives

[+ + LIS -
M1 ™ A1 T A - o) kAl A
A = 4)

+ +

. + LIRS ]
o * (- qodkia A A

. . ok -] L L N
where k1 designates the quantity (1 + dkdk) and akAk-l is
®
utilized in place of dk. The expression in (4) exhibits the structure

of the representations for the generalized inverse of matrices A = [U,

Consider an arbitrary matrix A = [U, V], where U and V have
£ and k - £ colums, respectively, 0 < 2 < k. Corresponding to
x4k -
c and k; in (4) let C= (I- UMV and K = (I + VU UM,

and let

-

* * ~
vt - utvet - u'va - ¢t K,V vt Ut

* LR
I ch+ (1 - C*C)Klv vt

-

Then we have

Theorem 3.2 A necessary and sufficient condition that Xl = A
R 4%
is that the matrices C'C and V U U'V commte.
Proof: It will be shown that A and X, satisfy the de-

fining equations in theorem 2.1, where the commutativity of c'c and

x ® *
V U U'V is utilized in order to conclude that (XA = XA .
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Using the definition of C and the relation CC'C = C to simplify

the resulting expression, block multiplication gives

A, =uw'+oct . (6)

1
*
Thus, since both w' and cc are hermitian, (AXl) = AX1 .
Now U'C = (0" - U*0U")V = 0 implies C'U =0, by (P1) and (P27).
Whence

w'veccv=wrvs+cctc=wtvec=v,

and the product AXlA = (AXl)A becomes

A A = (' + ccHhy, @t + ccHv) = U, V] = AL
Similarly, Xlel = X1 (AXl) reduces to
C + .+ + + x4k 4]
vt - utvet -utva - cTokyv Uty
Xlel = = xl ’
® 4R
A ¢+ 1 - coxvuu
since Utut +cc’y = U" and ¢t Wt +ccty = ¢
. . + + + +% 4 +* 4 K
Finally, with CU=0,CV=CC and U UU = U @U =
+ -+ * +X
(Uwu') = U , the product X;A beconmes
LIS -
[ u*u - u'va - c'ok v Ut utva - c'oK,
X,A = (7N

* *
I - C+C)K1V u* I -(1 - c*cp(1




x 4%
where K,VU U'V=1 - K, by definition of K; . Suppose now that

1
* *
c'c and VU U'V commute. Then

a-co a+vit'rtty = a+ vttty a - co,
and so
K(I-co = (1-cok . (8)
Since both K1 and I - C'C are hermitian, this implies
(K, (I - ctol’ - K (1 -c0, 9

%
and it follows in (7) that (XlA) = XlA .

Thus we have shown that A and X1 satisfy the relations

AGA = A, X A, provided C'C

1 1% = X 1
' * 4R 4 +
and VU UV commute, and so X1 = A

* : *
AX (AXl) = AX, and (XlA) =5,

: 3
Conversely, if Xl = A" , then (XlA) = XIA’ and (9) follows at

: K 4k
once from (7). Hence (8) holds, and c'C commtes with V U" U'V .
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X 4k
The existence of matrices A = [U, V] for which c'c and vU'U'Y

do not commute can be shown by simple examples. Consequently, X

1 does

not provide the most general form for A", Before considering the general

form, however, we will establish four corollaries to theorem 3.2. Assume

A has the form A= [U, V], and again let C = (I - UU")V and
* 4% -
K = 1+ vutun

Corollary 3.1

* ®
ut - U+VK1V vyt
AT = (10)
x ®
ct o+ KV vt ot
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k 4%
if and only if c'cvu'u'v = o,

® 4% LIS
Proof: If C'cvu'u'v-s 0, then V t"'u'v and c*c commute,
X 4+ & ® Rk LR
and X, = A", Also, C'CVU"U'V =0 imlies C"V U U'VC* =0
and thus

uvc = 0. (11)
Whereupon )(1 in (5) reduces at once to the right hand side of (10).

Conversely, if A" has the form given in (10), then it follows

from the equation MA = A that

L3 ® * %*
vt utv + vy s VU UV = .

+ +

* 4%
Using the relations K, -I-KV U'U'V and C'v = C+C; the definition

of C now gives

C1 - k) +vc'c = ¢

and so

c'c@-x) = 0.
Hence

ctc (1 + Vut'utyy = c'c
and

x4k
clecvu'u'y = 0.
. + K 4k 4 . .
Note in Corollary 3.1 that CCVU UV = 6 is equivalent to the
. * 4k
condition vc'v=2c. If C'cvuiu'y = 6, then we have, using (11),

+

vetv = v¢'c = vc'c - witvctc = cc*c = C .




Conversely, if vctv = C, then
* * L3 ® ® ®
vuitutvc'c = vututve'v = vutu'c = e,

® *
and thus C'cvututy = o .

For the special case in which C = 8, Corollary 3.1 reduces to

Corollary 3.2
e * * -
ut - U+VK1V vt
AT =
LS +
"l‘v' U U

if and only if C=0 .

Proof: That (10) reduces to (12) when C =0 is obvioué.

Conversely, if (12) holds, then AA = A implies

* ® R 4%k 4%
'y - W'k, v Ut 4 KV ututu'y = v,

C. Hence CK, =0 andso C=0.

which reduces to C(I - K;) 1

+ Kk 4 L S .
Suppose now that CCVU UV =V U UV. Then again
A 4%
VU'U'V and C'C commte and we obtain two more special cases of

theorem 3.1,

Corollary 3.3

vt - utvet

if and only if

(12)

(13)
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R LR * 4%
clevututy = vututv . (14)
% *
Proof: From P4), B BB' =B for every matrix B. Hence, taking
: + . + K 4k 4 X +X 4+ . .
B=0UYV, the relation CCVU UV = VU UV implies that
LY S Y
ctovut = vut (15)
and using (8) gives
x ok
(1-coxvu'u = 0.
Whereupon Xl reduces to (13).

Conversely, if A" has the form given in (13), then A'A becomes

ut'u utva - cto

AA

6 ctc

+,.. % + . . + o X +E . .
and (AA) A'A implies (I -CCVU = 0. This gives (15),

from which the converse follows.

A 4k
Analogous to the equivalence between the conditions C'cv U* U'V =
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0

+ ey s . + K 4k 4 LS S
and VC'V = C noted above, it is easily seen that CCVU UV =V U UV

. . . + + K 4k 4 * +% 4 .
1s equivalent to having VCV=V, If CCVU UV=VU UV, then it
follows from (15) and the definition of C that
* 4k % * X 4k %
V-t uttet = v - Vit
or
* P * %
VvV -CC(Vv -C) = C

® F
Thus V -c'cv =6 andso V=vc'c = vc'v.
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Conversely, if vc'v = V, then
R 4% x 4% X 4+ &
vutu'v = vutu'vely = vututvec,
which implies
x 4k x 4k
ctevututy = viutu'y .
Note, in particular, that whenever C has full colum rank we have
+ * -1 * + + +
C =(C C, by (P12), andthus CC=1I. Hence VCV=VCC=1V,
and A' has the form given in (13). Clearly, this is the case in the
form for A+, (1), when K # 9 and bk = c:l"; in (2). On the other

hand, when C = 6, Corollary 3.2 is applicable, and the form for A
* -1 %
with b = (1 + dd) "GA | follows directly from (12).

For the special case in which C =V, vc'v = W'y = V, and

Corollary 3.3 reduces to

Corollary 5.4

AT = (16)

if and only if C = V.
Proof: If C =YV, then w'v =6 and
+

utve® = vtwutvet = o

in the form for A', (13), which gives (16).
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Conversely, if (16) holds, then it follows from the relation

A'A = A that
w'v + w'v = v,

Hence UU'V =6 and C=V.

Let us now consider general forms for A" in which it is not
required that c'C and V*U+*U+V commute. Let C designate the
expression

cC=(1-whHu

obtained by interchanging the roles of U and V in C= (I - UU+)V.

Also, let K and K designate the dual expressions defined by

1+ (1 - covue'vtva - cor? an

~
n

=~
"

~p~ Rk ~e -
1+ (- couvi™vtua - ctort. (18)

(Note that both K and K, inverses of positive definite matrices,

exist for every U and V.) Then we have

Theorem 3.3. The generalized inverse of any matrix, A = [U,V] can

be written in the following eqliivalent forms.

* *® 1
¢t - v'vet - vtva - corvututa - veh
(a) A=
+ + LI I +
ct+ 1 -cloxvututa - vch )
[~ LIS -1
vt - utve - utva - cloxvetuta - veh
() A=
-~ -~ -~ -~ * * -
| V" = v'uc - viua - cfox VTV - uch) |




~ g~ o~ R ok ~
ct+ (1 - cClor vt va - uch
(3] A

® 3
ct+a-coxwututa - veh

Proof: Let X, designate the matrix

(=

vt - utvet - u'va - cto
X, = (19)

| '+ q-coL

obtained from Xl in (5) by replacing the quantity KIV*U**U+ by an
arbitrary matrix L, of the same size. Then it follows immediately,
using block multiplication, the definition of C, and the relation
C(I - C+C) = ¢, that AXO =w' + cct = AXl, and so we have

*
(AX,) = AX, and AX,A = A from the proof of Theorem 3.1.
0 0 0

AX, = X

Now forming XOAX0 = XO(AXO), it is clear that XO 0 0

provided L satisfies
Lwst + ¢y = L. (20)

Similarly, forming XOA gives

(U*'u - v'va - cow utva - cfoa - W) |

X A

(1 - c'oL c'c+ (1 - coLv |

b
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*
upon simplification of the submatrices, and it follows that (XOA) = XOA

provided L satisfies
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w'va - coa - wm]T = a - cow (21)

and also that both U'V(I - ¢'Q)LU and (I - C*'C)LV are hemmitian.

We will now show that the expression
X 4%
L = xwuua - vch, (22)
with K as defined in (17), satisfies these conditions.

since U'(I - vehut = U* and U'( - vCMoct = -utvet
then L in (22) satisfies (20). Next observe that since I - c'c is
X o 4
idempotent, it commutes with the matrix T + (I - C+C)V U U#V(I - C*C),

and thus with K. Whereupon, with both I - c'C and X hermitian,

+ * +
[(I-COK] = (I-COXK,

and so

* *
u'va - cfow = u'va - ctox'ut

is hermitian. Moreover, we have

* ®
(1 - coLv (I -coxka-covueuva-co,
or

(1 =coLv (I-coa-x,

which implies that (I - C'C)LV is hermitian. Finally, since

"

tva-cfo g - = UtV 1 - ok = [a - clorut™)”

and

x ]
a1-cow = (1-coxvu,

then (21) holds for this choice of L.
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Thus it has been shown that XO and A satisfy the relations
* * .
AXOA = A, )(OAX0 = XO , (AXO) = AXO, and (XOA) = XOA , provided L

has the form given in (22), and so X0v= A* . The form for A* in (a)
is obtained by replacing L in (19) by the expression in (22).
The forms for A' in (b) and (c) are now easily established.

Let A designate the matrix K = [V, U]. Then it follows from (a) that

A+ can be written as

I ~ TR WY ~
vt - viuct - viua - ctorku vtV a - uch

A = (23)

~

+

* * ~
ct ¢+ 1-corw vty a - udh
i

~ o~ o~

where EJ and I~( are the dual expressions obtained from C and K by
interchanging the roles of U and V. Since A and A differ only by
the order in which colums are written, there is a unitary permutation
matrix P, say, such that A= AP Then we have A" = P*.:\"', by (P29).
Now P as a right multiplier permutes columns of ;\, and P* as a
left multiplier permutes rows of A" in the same order, and it follows

from (23) that A" can be written in the form

~ ~a~ o~ R AR ~
ch+ (1 -ctoxu vtV a - uch

A= (24)

-~ -~ ~ -~ * * ~
| V- viuct = viua - ctoxu vVt - uc’) |

But A" is unique. The forms for A" in (b) and (c) are obtained now

by equating the corresponding expressions for suBmatrices in (a) and (24).
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It also follows from the symmetry exhibited by the expressions
for A" in Theorem 3.3 (a) and (24) that Theorem 3.2 and each of its
corollaries has a corresponding dual form in which the roles of U and
V are interchanged.

Consider an arbitrary matrix A = [U, V], and assume At s
known. Partition A" as A' = (S) where G and H have the size of
U* and V*, respectively. Then Theorem 3.4 provides an expression for

U" in terms of G, H, and related matrices.

Theorem 3.4.
+

Ut = G[I + V(I -H)'H]

I -H-0-WI-mWHY Mm- T -wa-mwie).

Proof: We know from the expression in Theorem 3.3 (a) that

k L%
u'vet - utva - corvututa - veh

9]
1]
Lam)
'

and

* *
ct+a-corwututa - vah

)
[

in the partition of A corresponding to the partition A = [U, V].
Then it follows using the relations employed in the proof of Theorem 3.2 (a)
that

av = u'va - c'ok (25)
and

I-H = (I-COK. (26)

Further, I - C'C is idempotent and hermitian, and commutes with K.

Therefore, since K is nonsingular, we have
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+ -1

a-m* = x a-co,

by (P30), which combined with (25) and (26) to give

o (a-mw = uvva-co 7
and
+ +
(I1-mwma-mwm* = 1-c'c (28)
Now since C'cct = ¢,
* ®
v - M = uv'va - ctoxvututa - veh
and so
G[I + V(I -HN)'H] = U™ - u'vc . (29)
Moreover
® *®
1-wI-mwE = q-cowuvva-veh ,
and thus
+ +
H-I-HI-mwE = ¢ . (30)
Finally, since u'c = 6, we have
Ut = G[I+ VI -HNHIQ - cch)

from (29), which combines with (30) and the relation C''

C to
give the stated form for ut.

The following corollaries provide special forms for u* correspond-
ing to the forms for A* in corollaries to Theorem 3.1. This corres-
pondence is apparent by observing that the relations satisfied by V
and C are simply the alternative statements of the conditions on

X L%k
C+C and V U+ U+V which were noted above.




Corollary 3.5. U' = G[I + V(I - HV)'H] if and only if VC'V =

Proof: It follows from (29) that Ut = G[I + V(I - HV)+H] if and

only if u'vc® = e. But this implies vc'v = C, and conversely.
Corollary 5.6. U’ = G(I - H'H) if and only if VC'V = V.

Proof: From Corollary 3.3 we have G = vt -u'vet and H=C'

if VC'V=V. Hence G[I + V(I - H)™H] = G in (29) and H - (I - HV)
(I - HV)+H = H in (30),and the general form for U* in Theorem 3.4
reduces immediately to the above expression.

Conversely, since we can write the general form for G as

G=U"(I - Vi), then
ut =uta - vy - H'H) = Ut - 1)
if U =G( - H'H). This gives U'H'H = ¢ and so
* * 4% 2 *
w's = w'HE H = w'H'm =,
+ R + . .. +
Then, HUU = 6, since UU is hermitian, and 6 = HUU =
® * * &
cw'+q-cowutyt g-vchuw' = a-coxvuut,

® *®
which implies G = U" - U'VC' and H=C" . Whence C'ocvU' UV =
®* 4% + +
VU UV, by Corollary 3.3, and thus VCV = V.

+

Corollary 3.7. U = (G if and only if C =V,

Proof: That C =V implies U =G follows directly from

Corollary 3.4. Conversely, if vt = G, we have

% *
u'vet + Utva - o et Tyt @ - veh =, (31)

83

C.
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by definition of G. Multiplying (30) on the right by vc' then gives
u'vc® = 6, and thus

* *
U+VK1V vttt =,

where K; = (I + V*U+*U+V)'1. Therefore U V(I - K;) =6 and

VW'V = 6, from which it follows that U'V =6 and C = V.
Observe in Corollary 3.5 that VC'V=C if C= 6. In this case

H = Klv*U+*U+, and I - HV = K, 1is nonsingular, by definition of K-

Conversely, if I - HV is nonsingular, then c'c = 8, by (28) which

implies C = 6. Thus is follows that I - HV nonsingular is a necessary

and sufficient condition that A’ has the form given in Corollary 3.2.

Since we can have VC'V=C but C # 6, I - HV nonsingular is only

a sufficient condition that U’ has the form given in Corollary 3.5.

In Corollaries 3.6 and 3.7, however, the necessary and sufficient

conditions that U' has the simplified forms can be restated in terms of

V and H. This gives Corollaries 3.6 (a) and 3.7 (a).

Corollary 3.6(a). Ut = 6(I - H'H) if and only if HV is idempotent.

Proof: From Corollary 3.6 it follows that we only need to show that
HV idempotent implies vc'v = V, and conversely.
If VC'v = V, then H = C+, by Corollary 3.3 and

E
1
(@]
<
o,
<
1
(@]
<
(]

HV.

Conversely, HV idempotent implies that I - HV is idempotent.

Therefore, since we also have I - HV = (I - C+C)K hermitian, from the
+

proof of Theorem 3.3(a), (I-H)* = I-H/ . Nw (I - m)* =kl - c'o,
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and thus
kla-cog = a-mae-m* - 1-c%,
by (28). This gives
a1 - covur'utva - ¢to = o,

L3 *
by definition of K. Then (I - C'C)V U" = o, and it follows from
the proof of Corollary 3.3 and the remarks immediately thereafter that
vc'v = v,

Corollary 3.7(a). U' =G if and only if HV is idempotent and

VH is hermitian.

Proof: The result follows from Corollary 3.7 by showing that HV
idempotent and VH hemmitian imply C =V, and conversely.

If C=V, then H= V+, by Corollary 3.4, and we have HV = v'v
idempotent and VH = W' hermitian from Theorem 2.1.

Conversely, suppose that HV is idempotent and VH is hermitian.
Now we know from the proof of Corollary 3.6(a) that HV idempotent

implies VC'V = V. Hence H = C*, by Corollary 3.3, and so VHV =V,

HH = c'v¢' = c'cct = ¢* = H,
and
» * + *

H) = ()0 = c'c = Hv.

Then with (VH)* = VH, by hypothesis, H and V satisfy the defining

equations for the pseudoinverse. Therefore, H = V+, but H=C'

Hence C =V, by (P1).
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E‘“l in which
X

G.1 has k - 1 rows and hk is a single row, Corollaries 3.5 and

For the special case A = [Ak-l’ ak] with A" =

3.6(a) combine to give a form for A]Z-l corresponding to the represen-

tation for A’ in (1) and (2). Since hkak is a scalar,we have

G_q [T+ (1 - haplah ], if ha #1,

+ . -

+ . . +
A form for V' corresponding to each representation for U
follows at once from the dual symmetry noted abcve. In each case we

simply inter-change U and V, G and H, and replace C by C.

* *
3.3 Representations for the Pseudo Inverse of Sums of the Form UU + VV_

The purpose of this section is to present representations for the
pseudo inverse of certain sums of matrices. Consider matrices of the
form UU* + VV*. Observe first that this sum is defined if and only if
U and V have the same number of rows. The assumption that U and V
have the same number of rows. The assumption that U and V have the
same number of rows, is implicit throughout the following considerations.
Let A be any matrix with n colums partitioned as A = (U, V),
where U and V are submatrices with k and n - k colums respectively,
0 <k <n.

It is computational to confirm that A" can be written in the form

X 4%
vt -utvet - utv @ - cfo wututa - veh

L. x
ct+ (1 -clorwutut - veh
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where
C = (T-whHv 2)
and

K = [I+(I-covu'u'va-cor? (3)

* *
A representation for (UU + VWV ) is now obtained.

Theorem 3.5. For any matrices, U and V, the pseudoinverse of

* *
the sun UU + VV can be written in the form

* * LY .
W +wH = -ctVawt -ty a - cto ;

~
-
-
-

7

-

C
b

%
(1-vchH +ctct
where C and K are as defined in (2) and (3).

Proof: Let U and V be any matrices, and let A = (U, V).
Then UU* + W* = AA*, and it follows from (P11) that (UU* + W*)+ =
A+*A+. The above represemtation for (UU* + VV*)+ is obtained by
using A" from (1) and block multiplication to form the product

+* 4+ .
A" A, For this purpose let

M

* *®
I1-Uva-cox u 4
and

* *x
(1-cor vtut q-vchH ,

=
L}

so that (1) can be written as

mut (1 - vch
At = (5)
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Now by the defining equations in theorem 2.1, I - C'C is hermitian

*
and (I - C+C) ¢ = o. Consequently, we have N ¢’ = 0 and so
* * *
€ +N (€ +N) = ¢t ANN. (6)

Next observe that since I - C'C is idempotent and commutes with the

matrix K,
MM = 1 -20'v (1 - c'o kU Uty @ - Cok a - o v
vt utv a - o it
or
MM = 1-U' @ -cor'utt-utva-cg B, o
where

* 13
I-covurva-cok = 1-K

by the definition of K. Finally, observing that multiplication of
‘ * % *
the last term in (7) on the left by (I - ctv )U+ and on the right

*
by u* (I - VC+) gives - NN, then (5), (6), and (7) combine to give

* ®* % ® *
AR = g -V utwt a-veh - et

Replacing M by the expression in (4) yields the representation for
* *
(Uu +w )+ .
We now state and prove five special cases where the general form

for A given in theorem 3.5 simplifies.

Let

® ® -
K = @+vutumt,
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Then we have

Corollary 3.8.

L] *® *
"+ wHt = q - ™Yttt a - veh
3 ] % ®
- UV @ - ¢fo) kVUTUt et (8)
if and only if c'C and- V*U”U*V commute.
* LR
Proof: If C'C and VU U'V commute, then
(I - c'OK = K, (I - c'o = 1 - c*o Ky (T - cto). (9)
Therefore
u'v a - ¢to w'ututvet
]
= U'v (1 - c'g) 1<1V*u+ tva-coc = o

and dually
® * * * *
cvitutva-cto wwutt = o

in the representation for (UU* + VV*)+, Theorem 3.5, which reduces to
(8).

Conversely, suppose that (UU* + VV*)+ has the form given in (8).
Them combining the relations c'u = 0, c'v = C+C, the definition of K

1
and the defining equations of Theorem 2.1 now gives

X ® L] ® * * % ®

W’ +wHt 't e wh = @ - VY wt e a - VY vttty
* ® ®

a-cov -uvtu'v a - co K,V uu”

* * % %
-utu'v g - cto a - KV + ctv

which reduces to
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* * *x % X K ok * *
w +wH' @+ wW) =w+cct - VUMY @ -+ ututy
4+ ®
(I-¢C 0 K1C
* * t3
upon simplification, using the fact that Vuu' =v - . Continuing in
the same manner yields
* * * * 4 * * * x4 x4
(UU +VW) (LU + W) (UU +W)=U0 +Wuu"+wece
LAFS 3 * ® * ® ®
-wtvutu'v (1 - clov' + wtv (1 - cto KC + W ututy
%*

+
(I-C'0xC

or

* * * ® 4 * * * * PO T
W +wW) @u +w) @u +w)=w +wW -vcevutu'y
* ] X 4% *
(I-c'ov +va-co KC +wWUu u'v (1 - c'o KC ,

where again the definition of C is employed and we have used the

relation
X 4 4+ k% * % * * x4
WC = (CCW) =(CV) =VC =VW - VVUU
But
* * * * 4 * * * *
(W +W) (WU +VW) (UU +W) =00 +W .
Therefore

x 4R * * LIS
-ve'ovututv 1 - oV v a1 - cto K,C + wuU'y (- ¢*o)

*

K1C = 0. | (10)




*
Multiplying (10) on the left by c* and on the right by v utvc'e

now gives
* %* * *
covututv 0 - cto viututvetc = o (11)

® E 3
Taking B = C'oV U U'V (I - ¢'® with C'C hermitian and idempotent,

*
(11) becomes BB = 0. Hence B = 0 and thus
® 4+ % LY
covututy = cov'ututvete. (12)

* +%
Consequently, with both c'c and VU UV hermitian, the right hand

side of (12) is hermitian and
* * * * * * *
covututy = v ututy” = viututve'c
as asserted.

* * %* * * * 3
Corollary 3.9. (U +w)H) =v"v" -v"v* - vt UVK v UTU"
+* 4+

ccC (13)

if and only if VC'V = C.

Proof: If VC'V = C, then VC' = vc'cc® = ve've' = cc* and
utvet = utcct = 0. Thus C'c and V*U+*U+V commute, and (13) follows
directly from (8).

Conversely, if (13) holds, then we can proceed as in the proof of
Corollary 3.8 to form

* * * * * * %
wu” + whHraut + wh - w* + uutvk e+ ¢t

and
* * * LIS * * * ® & + *
W +w)@u +VvwW) (WU +VW) =00 +VVWUU +UUVK1C+

* * * *
wu' U+VK1D + VW .
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w” + whHao' « wht ' - wh

* * ®
W +w'v (I -cov +va- covut

+

* * * L3
Va-covutuy - cov e veto”
from which it follows that

* + ®
W =2V (I - cov

x 4R * *x
+v(a-covututv a - ctov + vdtoy

or
* % * *
0=V (I -cov +v{a-covuuv a - covt (16)

. ... X 4% . . LA
Since I - C'C is idempotent and VWV =V implies CVV = C,

*
multiplication of (16) on the right by vk gives
* ] .
0=V (I-co+a-covuuya-cox=v- v
+.
and so VCV = V.

Corollary 3.11

* * * *
wu + wHt =utut s VY (17)
if and only if C=V.

+ + * * +
Proof: If C=V,VCV=WV=V and (WU + W ) can be
written in the form given in Corollary 3.10. Also, C = V implies

UU'V = 0. Hence U'V =0 and (I5) reduces to (17).
Conversely, if (17) holds, then multiplying the relationship

L3 *® * ® *x * *®
w” + wHe'v + VIVt s wh = wt e w
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+ +% % . * 4R 4 %
on the left by CC' and on the right by C C , gives CVU UVC =0,
®
Therefore U'VC = ¢ and

® *
C=ccc= (1 -uhvche = vc'e - wtve'ct® = vete = ve'y .

Applying Corollary 3.9 and the fact that the generalized inverse is

unique, we have

+%* 4

® * * *
vy =—U+U+VK1VU+U++C+C+

by equating the right hand sides of (13) and (17). Multiplication on
*
the left by VW now gives

+

* *
w=-v( -1(1)vu+ ut o+ vet (18)

which provides the essential relation required to complete the proof.

Multiplying (18) on the right by V and using vc'v = ¢ yields

=336

® *
V=C-V(I—K1)VU+U+V,

or
+ * +k 4
UUV-V(I-K1)+WU uv = 0, (19

by the definition of C and Kl' Then we have

LS
UV, +VUTUY = 0 (20)
by multiplying (19) on the left by U*. Since K, positive definite

x 4% 4 s . . . LB . |
and VU UV positive semidefinite imply that (K1 +VU UV

exists, it follows from (20) that u'v = 0. Therefore C =V,
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Corollary 3.12

*x * ® 3 * *
w +w)Ht=v"uv - vt U+VK1V utut . (21)

if and only if C = 0.

Proof: If C =0, then C' =0, VC'V = C, and (21) follows
® &
directly from the expression for (UU + VWV )+ in Corollary 3.9.
Conversely, if (21) holds, we have
* * X 4R
w” + wHou' + whHt = wt e oK, VUt
Since both the left hand side of this expression and UU*  are hemmit-

ian, then

* * * *® & * *
kv utut = vt = Ut U*Vch .

* 4k
Multiplying on the left by I - UU"  and on the right by VC ¢ now

gives
® 4% :
C(I - Kl)C C = 0,

and so
® 4+ %
C - CK1C C = 0, (22)

. % * * X 4 % * . .
Forming (UU + VW )(UU + VW) (UU + VW ) and setting the resulting

* *
expression equal to UU + VV , it follows from

* P x4 * * *
Ul +UUwW + CKlV o +C (I- Kl)V =UU +W -

]
that CK1C = 0, which combines with (22) to give C =10 .
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Numerical examples of matrices U and V for which c'C and
A 4k
VU UV do not commte and examples for which the conditions in
Corollaries 3.8 to 3.12 hold are easily constructed. In fact, examples

can be constructed using only matrices with elements zero or umity.

3.4 Pseudo Inverses of Sums of the Form U+ V

Suppose now that U and V are matrices of the same size. Then
we can consider representations for the generalized inverse of the sum
U + V. For the special case of *-orthogonal matrices (that is, where
Uand V are matrices with both UV* =0 and V*U = 0, we have shown
in (P25) that (U + V)+ =U" + V', In this section we develop repre-
sentations for the generalized inverse of the sum U + V, where U and
V are arbitrary rectangular matrices satisfying only the single
condition UV* = 0. Clearly, by applying the results to U* and
V*, representations for (U + V)+ when U*V = 0 follow by symmetry.
(P25) will again be established as a special case. (Corollary 3.16)

*
Consider any matrices U and V with UV = 0. Then
* ] *
U+V)@U+V) =U0U +W ,
and it follows from (P10) that
+ * * x 4+
U+Vv) =(@U+V) (LU +W)
S * * X 4
= U@UU +W) +V (UU + VW) 1)

* *
Now from Theorem 3.5 we have a general form for (UU + WV )+ which can
be substituted directly into (3.2). Alternatively, note that applying

(P10) to the partitioned matrix A = [U, V] gives
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X % X 4 |
U@@Uu +VvwW)
+

* ® 4
A = AMA) = (2)

LR x 4
VUu + VW)

Since A" is unique, corresponding submatrices in (3.1) and (2) must be
O *
equal. Substitution of the expressions thus obtained for U (UU + W )+

* * x4
and V (UU + VW ) into (3.54) gives

L]
Theorem 3.6. For any matrices U and V such that UV = 0,

* *
w+wn=vt-vtve -utva-clowutyt a-veh ¢t

® *
+ (I-coxwutu a-vch
® ®
=U+a-vtvyctsa-coxutut aq-vch.

The same five necessary and sufficient conditions employed in
corollaries 3.8 - 3.12 are also applicable to establish special cases
of the representation in Theorem 3.6. Since a proof of sufficiency in
each of the following corollaries is obtained by taking the corres-
ponding special representation for At = (U, V)+ developed in section
IT and forming the sum indicated in (1), only the necessity of each
condition will be established. For this purpose we first note that with
UV* = 0, we have not only the relations u'c = 0, c'u = 0, and c'v = C+C,

which hold for every U and V, but now also

+

. ’
uc ucct = o,

which implies

cawt =0, @ =0 (3)




X +% 4 * * . .
and (I+VU UV)U = U, which implies
KKu = U, K,U = U 4)

%
Corollary 3.13. If UV = 0, then

x 4+%
w+wn =u"-u'vc*-Uv'va-co KV Uyt
* *
+C+ 1 -CO kv Ut (5)

X 4k
if and only if c'c and VU U'V commute.

Proof: (Necessity.) Suppose that (U + V)+ has the form given
in (5). Then it follows by equating this expression and the expression

in Theorem 3.6 that
aI-u'v) 1 -co ettt a - veh
- 1 -U'Ma - co Vet
Multiplication on the right by V(I - V*U+*) now gives
(1 -u'y) a-cgka-coa- vt
= @-u'v a-cok a-vut,  ©

where we have used the fact that I - C+C commutes with K and the

definitions of K and Kl. Since the left hand side of (6) is

hermitian, then
* ]
a1-uv'v) a - co K, (1-VvU)

= (I -U'wm K (1 - coa - v,
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and so
* *
C+CK1 I-coa-vuehH = o, 7

where the second equation is obtained from the first by multiplication
on the left side by C'C and use of (3) and Theorem 2.1. Multiply-

*
ing (7) on the right by U yields

* * X X
c“cxlu - c"c1<1 (1-covitu = o
or
X

c*cxl(I -c'oyv = o,
by (3), (4) and the definition of C. Hence C+CK1 (I - C+C) = 0,
and it follows from the relatidn

F+ ’d — -+‘—-" "+‘

C Ckl = ( LK1L C

X LR
that C+C and V U+ U+V commute.

*
Corollary 3.14. If UV = 0, then

* 4% % 4%
U+ =u - UKV s e kUt (®

if and only if VC'V = C.

Proof: (Necessity.) If (8) holds, then it follows from the

relation (U+V) U+V (U+V) = U+V that
U+ VU s WV e C (oK) +VEY = U sy,

and so
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LS +
CKIVU +C(I-K1)+VCC = C.

Multiplication on the right by U'V now gives

C(I-K = 0.

1)

X 4+ *
Hence, CV ututy = 0, which implies u've = 0, and we conclude that

VC'V = C as in the proof of necessity in Corollary 3.11.

: *
Corollary 3.15. If UV = 0, then

w+wn = uvt-uvvet .t (9)
if and only if VC'V = V.

Proof: (Necessity.) If (U + V)+ has the form given in (9),
then if follows by equating this expression and the expression in

Theorem 3.6 that
* %
-U'va-cloxwutut a-veh
* *
+ (1 -coxwutut g -vch = o.
. s . . -1 L .
Multiplication on the right by VK™~ (I - VU ) now gives
* 4% ' * 4%
I-tvya-covuvva-co a-veh = o,

which implies

® 4R
a-vv a-covut = 0.
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*
Using the relations UV =0 and UC' =0 it follows, therefore, that
kL%
w'v (1 - clovutyt = o.
+ +
Hence WUV (I -CC) =0, and so

v-vc'v = v (- c'o

=va-cog-wva-co =ca-co = 0.
Corollary 3.16. If UV' = 0, then
wu+wnt = vV
if and only if C = V.
Proof: (Necessity) Since UV"r = 0 implies that wh =0
and VU' =0, then (U+V) '+ V) U+V) = U+V gives
w'v + w'u = o
Multiplying by V'V on the right we have
w'w'v = w'v = o,
and so C=1V,
Corollary 3.17. If UV = 0, then
R MM AT S T (10)
if and only if C = 0.
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Proof: (Necessity) If (10) holds, it follows from

U+V) W+ @W+V) = U+V

that

+ ® 4+

U+ UUV + CKyvu +cC (1 - Kl) = U+ V,
or
* +%
CK,viy +C(I-K) = C.
1 1

Multiplying by UV on the right we have C (I - Kl) = 0 as in the
proof of Corollary 3.14. llence vy = C, and equating the expressions

for (U+ W' in (8) and (10) gives C" = 0 and thus C = 0.

*

Observe in Corollary 3.16 that C =V implies UV = 0, and

conversely. When combined with the hypothesis of the corollary, we
+ + + . * ® .
then have that (U+ V) =U +V if UV =0 and UV =0, that is,
if U and V are *-orthogonal matrices. Also observe that when C =V
® *

in the hermitian case, Corollary 3.11, UU and W are *-orthogonal

and (3.17) can be written in the alternative form
* * ES *
' +wH' o= )t e o)t

Finally, it should be noted that although proofs of sufficicncy in
Corollaries 3.8 to 3.12 can be constructed directly by taking the
corresponding special representation for At = [y, V]+ from section
IT and forming A+*A+, reduction of the resulting expression to obtain
the given form for (UU* + VV*)+ is required in Corollaries 3.8, 3.9,

and 3.12. llence, unlike the proofs in Corollaries 3.13 to 3.17




sufficiency in these corollaries to Theorem 3.5 is more easily

* &
established by direct reduction of the general form for (w +w )+ .

We now consider two applications of representations for (U + V)+.
We first establish relationships between V' and the pseudo inverse
of C= (I - UU*)V, where U and V are arbitrary matrices, and show
as a special case that VC'V = C is a necessary and sufficient
condition for V to have a particular decomposition into a sum of
*-orthogonal matrices. We then consider the partitioned matrix
A= (U, V) and employ Corollary 3.15 to obtain a simple derivation
of the form for A’ in (3.1).

As noted above, each representation for (U + V)+ with UV* =0
has a corresponding dual form with U*V =0. If F and G are any

* ~ *
matrices of the same size with F G = 0, and if C = (I - F+F)G and

~ ~p~ * % ~p -
K=[I+1-COQc'F6 a-col,

then it is easily shown that the dual form for the representation in

Theorem 3.6 is

~ 4% ~ % * %k~ ~ 4~
F+6" = F-cef - 1 - TPk (1 - ot
~ 4% ~ 4R % k-~ ~ 4
+ €+ (1 -CTOFFTGK (1 - CO). (11)
This form for (F + G)* can be used to establish a general relation-
ship between vt and C'.
Let U and V be any matrices with the same number of TOWS,

and consider the decomposition

v=( -uwhHv+wv = c+uw'y (12)
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* *
Since CU=0, then F=C and G = UU'V satisfy F G = 0. In

this case
~ * *
c=(-covw" = a-cov ,

and, with I - C'C idempotent and hermitian, (I - C'C)C = C
. . ~+ “+ + ~4 ~+ & . . .
implies C =C (I -CC), andso CC=CV . Substitution in

(11) now gives

Theorem 3.7.

~3. %
vio= ¢t - cFlortvet

= (1 - c'wrvctcVw'k a - cvhwrtvet
+ e - CMwtvctetTV R a - EVY.
For this representation we have
K = [I+(1-cVhwve'c™V w* (1 - vyl
Now K can be replaced by

* * -
K, = [I+wvec™ Vo'
. . pe + o+ 4% k4 .

if and only if CV and UU'VC'C V UU" commute, and special forms for

V' are easily obtained which correspond to Corollaries to Theorems 3.5

and 3.6. Analogous to Corollaries 3.14 to 3.17 necessary and sufficient

~

conditions for V' to simplify can be stated in terms of UU+V, C

’

and C'. Alternatively, we can proceed as follows to obtain special cases

in terms of V, C, and ct.
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+ ~ + * 4+
If C=V, then WV = 0, C=(I-VVWWU = 0, and
the representation for V" reduces to c*. On the other hand, if

~ * *
C=0,then C=V =V UU" and the representation for V" reduces

~ 4R
to C = (UU+V)+. In each of these cases the converse follows
immediately.

For the cases VC'V = C and VC' = V we can proceed directly.

In the first case, however, it is interesting to observe that vctv = ¢
is a necessary and sufficient condition that (12) is a decomposition

into *-orthogonal matrices. We have

Lemma 3.1. C and UU'V are *-orthogonal if and only if
vc'v = C.

* &
Proof: Since CU = 0, we only need to show that w've =0
implies vc'v = C, and conversely. But his is obvious by noting that

* *
w've” = w'vctcc® and that
* *
c = cc'c=vcc - wtvctc = vetv - wutve et .
Combining the dual form of Corollary 3.16 and Lemma 3.1 now gives

Corollary 3.18.

+ +

vi = ¢+ wi'w?

if and only if C and w'v are *-orthogonal.

Suppose that we are given matrices U and V such that (3.65)
is a decomposition of V into *-orthogonal matrices. Then we know
from Lemma 3.1 that VC'V = C, and it follows by multiplying the ex-

pression for V' in Corollary 3.18 on the left and right by V that




+

w'v = vuutntv . (13)

Now since both V'V and W' are hermitian, w'w'v = w'v implies
vVivau'vyt = vyt and, with w'c = whvev = vc'v =g,
wuu'v = w'v implies (UU+V))W+ = (UU+V)+. Therefore,
multiplying (13) on the left and right by v gives viutwt =

V*V(UU+V) who= (UUJ'V’)+ . Conversely, if the representation in

Corollary 3.18 holds with (W'W)* = v'uu'w*, then c'w* = c*.
Thus W'C = C and VC'v = W' (1 - wHv = w'c = C. This

establishes

Corollary 3.18(a).

+

¢t = v - viwtwt

if and only if C and W'V are *-orthogonal.

For the case VC+V = V we have

Corollary 3.19.

* * ~ & % ~
vvo= ¢ -cicty wk,u've + 'ty 'K, (14)
if and only if VC'V = V.
Proof: Since V'V is hermitian and V'V = C, then

vive® = ¢'. Twus if VC'V = v, then V'v = v'vc'v=c'v=c'c,

C=( - C+C)V* = 0, K reduces to I~(1, and (14) follows directly

from the representation in Theorem 3.7.

Conversely, if (14) holds, we have by multiplication on the left
by UU'V that
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ww* = witvet - (1 - f(l)UU"vc+ + (I - f<1),
by definition of K or

wtvet + 1 -k

uww = K1 1°

Multiplying on the right by V and rearranging terms now gives

~

I S
KlV - KlUU VCV = (.

Since UU" is idempotent and commutes with kl’ and U'C = 0, it

follows that
f<1UU*V (I-cv = o.

Thus (V-CO( -CV) = 0 andso V = vC'v.

Although we have employed the form for A’ in (3.1) to build up
the pseudo inverse representations for various sums of matrices, it is
Clear that each representation could have been established by direct
verification of the defining equations in Theorem 2.1. In particular,
having established the form for (U + V)+ in Corollary 3.15, we can
Close the loop by giving a simple derivation of A* in (3.1).

Observe first that any matrices, U and V, with the same number

of rows satisfy the relation
v=w'v (I -co + vctc.

Now setting U= [U, W'V (I - C*C)] and V = [0, VC'C] it follows for

any matrix A = [U, V] that
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* + + R s
where UV = UUV (I -CCCCV = 0. Rewriting U as
u = uir,u'va-cor,

where the second factor in the product has full row rank, it can be

shown that

vt = [, u'va-cortt.

® *
Application of the fact that At = (A A)+A to the first factor

of this product now gives

-

ut = U (15)

|1 - coviutk
with

K = [1+u'va-cove™?t.
Thgn U_U_+ = uu' ,

[0, (1 - whvcle] = [0,¢c], "= % |

e

]
r~
=

]
=
(s
<3

L}

and so

vc'v = vc'[o, vc*c] = [0, vc'c] = V.

From Corollary 3.15 we have, therefore, that

+

A=t = u-Uve et (16)




Finally, observing that K can be rewritten as
~ % 4%
K = 1-Uva-cowu,
where
* 4% -
K = [I+(1-covuiuva-cor?t,
and
* 4%k~ ® +%
(I-covu'x = 1 -coxvu,
+ .
U in (15) becomes
k 4%
vt -utv - ot
* 4%
| a-coruy
which combines with gf and Ygf = v¢" to give the representation
for A" in (3.1) directly from (16).

We now give some concluding remarks on computational forms.
If V is a single colum, and either C=0 or C# 0 and
k] %
c'c = (co 1C C = 1. If we denote this special case by writing
+ X 4% 4+ -] .
V=v, ¢c=(I-UU)v and 54 =(1+vU Uy) ", Corollaries

3.10 and 3.12 combine to give

$% % * %
(- VU (- v+ T, if
(UU* + vv*)+ =

* ® * 4+
U VANESS 07 AoV Vi T if

109

c#0
(17)
c=0.
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By the remarks after Corollary 3.17, concerning reduction of the general
representation for (UU* + W*)+, it follows that forming the
expression in (17) when ¢ # 0 is equivalent to applying formula

(2.1), (2.2) to obtain AY = [U,_\L]+ and forming A+*A+. When ¢ =0,
however, application of the expression in (17) does not require direct
formation of the submatrix ElU'*L\r_*UJ'*U+ employed in the formula for

X 4k 4 kK 4K
At = [u, 1]+, but only the formation of 51(! vt U+) v u' U+) .




QIAPTER 4

THE SCROGGS-ODELL PSEUDO INVERSE

4.1 Introduction

The definitions given in Chapter 2 fail to inherit an important
spectral property of the inverse of a non-singular matrix. The

property to which we refer is:

If a matrix A is nonsingulgr and if u is an eigenvalue of A
corresponding to the eigenvector x, then u-l is an eigenvalue of A'1
corresponding to x. Drazin [37] defined a gencralized inverse of a
matrix which preserves this spectral property of the inverse for the
generalized inverse as far as it is possible to preserve it for a
singular matrix. That is, if u is a non-zero eigenvalue of the
matrix A corresponding to the eigenvector x, then u'l is an
eigenvalue of the pseudo inverse of A corresponding to the eigen-
vector X. Drazin defined the pseudo inverse AD (D for Drazin)

as follows: If J is the Jordan canonical form of a square matrix

A, we have, of course A = pop L,

Now the Jordan matrix J can be
regarded as the direct sum of a number of matrices Ji corresponding

to the distinct eigenvalues of A. Ji is nonsingular if

A # 0 and nilpotent if A = 0. Let J? be the direct sum of JDi,
where JDi = J'1 if A # 0 and JDi is a null matrix if A; = 0.
Finally, let AD = pI%L. Then it was shown that AP was the

unique matrix satisfying the three conditions:
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A.K+1AD = AK for some positive integer K.
AnP = AA
AD) 2 _ 4D

Drazin shows that AY is unique. However, it is not true in general

A, and it may occur that AlD = AZD when A1 # AZ.

that (AD)P
Also, AADA = A only when A has generalized null vectors of
height at most one, i. e. each Ji corresponding to N o= 0 is
a null matrix in the above definition.

Recently, Odell and Scroggs [68] defined a pseudo inverse on
which attention is focused in this chapter.

Throughout the discussion that follows it will be assumed
that A 1is an n by n complex matrix representation of an operator
on the n-dimensional Hilbert space X. The definition adopted here
of a finite dimensional Hilbert space is that it is a finite
dimensional, complete, complex inner product space.

A vector x 1is said to be a generalized eigenvector of A of
height k, k > 0, corresponding to the eigenvalue u if and only
if (A - uI)k'lx #0 and (A - uI)kx = 0. A vector x is said to
be a generalized eigenvector of maximal height corresponding to
u if and only if there exists a positive integer k such that x
is a generalized eigenvector of height k of A corresponding to
u and x ¢ R (A -ul), the range of A - ul. If x is a generalized
eigenvector of A corresponding to zero, we will say that x is a

generalized null vector of A. If x. is a generalized eigenvector
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of height k for A, then the sequence of vectors (A - uI)jx,
j=0,1, 2, ..., k-1, is said to be a chain of generalized eigen-
vectors of length k. In the definition given below for a pseudo
inverse, use is made of the Jordan form of a matrix. Let C be the
Jordan form of the matrix A, then there exists a matrix P such

that PAP™!

= C. However, there are, in general, many choices for P.
In order to insure uniqueness of the pseudo inverse, we shall place
certain restrictions on P. The colums of pl are a basis for X.
These columns are maximal chains of generalized eigenvectors of A.
We restrict the possible choices for P by putting orthogonality

restrictions on the colums of P-l.

The following restriction will
be referred to as condition (0) for P with respect to A or

simply as condition (0) when it is clear from the context what is meant.

Condition (0): Any generalized null vectors of maximal height,

say k, of A which appear as colums of P’1 ‘are mutually ortho-
gonal and orthogonal to all generalized null vectors of A which
are of height less than k.

It should be noted that if PAP !

= C where C 1is a Jordan
form of A, then the fact that P satisfies condition (0) with
respect to A implies the above orthogonality restrictions on the
colums of P L.

We shall use the symbols R(A) and N(A) for the range and
null space of A, respectively. Also, if U is a subspace of X

its orthogonal complement will be designated by U¢.
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4.2 Definition, Properties and an Application

We now define the Scroggs-Odell pseudoinverse.

Definition 4.1: Let A be an n by n matrix with Jordan

canonical form C. Then there exists a non-singular matrix P
satisfying condition (0) such that PAP'1 = C. Define CI to

be the matrix such that

I
c'c = PR(CI) , 1)

I
cC = PR(C) , (2)

where PM is the orthogonal projection on M. Then the pseudo
inverse of A, A+, is defined by

At = pichp, (3

Naed

It follows easily from the definition that if A is non-
singular then A’ = Al

Theorem 4.1: Let A be an n by n complex matrix represen-
tation of an operator. Then there always exist a matrix P satisfy-

1

ing condition (0) such that PAP ~ = C, where C is a Jordan form of A.

Proof: Consider the ranks of the iterates of A, r(A),
r(Az), cens r(Ak). Let k be the smallest integer such that
r(Ak) = r(Ak*l). Find a basis for N(A). Compute a basis for

N(AP) - N(Ap-l), P=2,3 ..., k-1. From considerations of rank,
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we see that it is possible to find an orthonormal basis for
N(Ak) - N(Ak'l) which is orthogonal to N(Ak'l) and, consequently,
orthogonal to N(AP), Pp=1, 2, . . ., k-2. These basis vectors
are generalized null vectors of maximal height k of A which
are mutually orthogonal and orthogonal to all generalized null
vectors of A of less height. If for any interger m <k, we
have r(Am'l) - r(Am) > r(Am) - r(Am+1), then there are generalized
null vectors of maximal height m. Now if x is a generalized null
vector of maximal height greater than m, then some iterate of A
operating on x belongs to N(Am). If X1s Xpy « o o, xq are those
vectors in N(Am) which are images of vectors of maximal height
greater than m, we complete this set to a basis by using mutually
orthogonal vectors which are orthogonal to X1s Xgs o v oy X and
to N(Am-l). Again an appeal to the rank of A™ shows that this
is possible. We now have a basis for the generalized null space
of A consisting of maximal chains of generalized null vectors of A.
Since X is the direct sum of N (Ak) and the generalized range of A,
we can construct a canonical basis for the generalized range of A
in the usual manner so that the representation of A in the above
basis for X is a Jordan form for A.

We now state and prove three theorems which are interest-
ing in their own right, but also needed later to establish that the

above definition gives a unique pseudo inverse for the matrix A.

Theorem 4.2: If C is the Jordan canonical form of A,

then




Proof:

cclc

clect
*
«cto)

ccch”

= CC

- ccl.

Equations (1) and (2) define a pseudo inverse for C.

This definition is the same as the definition of E. H. Moore [66].

Equations (4), (5), (6) and (7) are used by Penrose [70] to define

a pseudo inverse.

Theorem 4.3:

These have been shown to be equivalent in [6].

If A is the n by n matrix representation

of an operator on the n-dimensional Hilbert space X, then

X =RrchH e N@© and R @ Nh).

Whalen [36].

Proof:

This follows directly from the work of Desoer and

Theorem 4.4:

CIC and CCI are diagonal matrices with

diagonal elements either 1 or 0. Considering the {ei}ig1 basis

(4)

(5)

(6)

(7)

for X, if Cei = 0, then the ih-th diagonal element of CIC is 0,

if Cei # 0, then the ik-th diagonal element of C
k

Similarly, if C

CC

I

is

1.

h

I

e.
1

Ic is 1.

= 0, then the ih-th diagonal element of CIC

is zero, and if CIei # 0, then the ik~th diagonal element of
k
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Proof: Since R(CI) ® N(C) = X, we can divide the basis

into two disjoint sets E' = {e. } E and E" ={e.} f with E'
spanning \R(CI) and E spanning N(C). Now if e, € N(C), then
h

CICei = 0. Therefore, every element in the ih-th colum of CIC

: h

must be zero. However, if e, € R(CI), i.e., Cei # 0, then by
k k

(1) CICei =e; . Hence, every element in the ik-th colum of

k
CIC is zero except for the diagonal element and the ik-th

diagonal element must be 1. Hence CIC has the form described in
the theorem. The verification of the form of CCI is easily

confirmed in a like manner.
Lemma 4.1: C' is the unique pseudo inverse of C.

Proof: Let C
1

1 be any Jordan form of C. We must show

that if C = Pl- ClP1 where P1 satisfies condition (0) with respect

I -1, 1 _ At I

to C, then C =P C1 1 =€ where CI and C1 are defined

1
by (1) and (2). Clearly there exists a permutation matrix Q such

t - ' -
that C; =Q Q. Therefore, C =P, 'Q agp, = P!

As P-1 represents a mere rearrangement of the colums of Pl-l,

condition (0) for P1 with respect to C implies condition (0) for
P with respect to C.

Thus, it suffices to show that if C = P'ICP, where P

satisfies condition (0) with respect to C, then CI = P'ICIP.
In view of the preceding paragraph, we may assume that C can be

partitioned in the following manner

CP, where P = QPl.
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c = (8)

where C2 is non-singular and C3 consists of all of the Jordan
blocks of C corresponding to the eigenvalue zero. Partitioning

P'l, we have

P, P, C, 0 C, 0 Py P,
= 9
P, P, 0 Cq 0 Cq P, P,
for any positive integer k. For sufficiently iarge k,

T 7k [k 1
C2 0 C2 0

= (10)
_0 Csd a 0]

The non-singularity of C2 and equation (9) imply that P2 0,

P3 = 0., Equation (9) for k=1 is equivalent to P1C2 = CZP1 and

P4C3 = C3P4. As a consequence of the non-singularity of P,

both P1 and P4 are non-singular. Also, Pl commutes with

C, if and only if it commutes with Cz'l.

I 1.1

Thus, in order to show that C = P "C'P, it suffices to

! |
show that C3P4 = P4C3 implies that P4C 3= C 3P4.
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Let the Jordan blocks of C, be C

3 31> G300 + « o> C3p’ i.e.,
C3 = diag (C31, C32, o e ey CSp) where C3i is an n, by n, matrix

C

all of whose elements are either zero or one. If n, > 1, then the only
non-zero elements are the elements of the diagonal above the

principal diagonal. Partition P, 1in a manner conformal to the

partitioning of C3, i.e., P4 (Pij)’ where Pij is an n; by n.

J
matrix. We assume that P,C, = C,P Let Q= P4C3 and R =C.,P

4~3 34 3°4°

Then the above partitioning of P4 and C3 produces, in a natural
way, a partitioning of Q and R. If Q - (Qij) and R = (Rijj,
then (Qij) = (PijCSj) and (Rij) = (CSiPij)‘ Now, from the nature
of C3j’ we see that the first column of Qij is zero. The k-th
colum of Qij is the same as the (k-1)-th column of Pij for
k=2,3,..., nj. From the nature»of CSi’ it follows that the
last row of Rij is zero and for k=1, 2, . . ., ni-l, the k-th
Tow of R.ij is the same as the (k+1)-th row of. Pij' By assumption,
(Qij) = (Rij). Thus, (1) every element of the first column of Pij
is zero except, possibly, the (1,1) element, (2) every element of
the last row of Pij is zero except, possibly, the (ni, nj)
element, and (3) the elements of any given diagonal sloping downward
to the right are equal.

Now consider the canonical basis, {ei}igl' Suppose C2
is a t by t matrix. The colums of Pl after the t-th colum
form chains of generalized null vectors of C corresponding to the
Jordan blocks of Cs. The colum to the right in each chain is of

maximal height. We can establish a one-to-one correspondence

between the elementary vectors e, for i >t and the colums of




-1 1

P © after the t-th colum by making the i-th colum of P~

correspond to e;- It is easily verified by actual multiplication

1 hich is the 1-th

that if e corresponds to a colum of P~
colum of its chain, counting from the left, then ey is a general-
ized null vector of C of height 1.

Let p be the right-hand colum of the chain corresponding
to the j-th Jordan block of Cs. Then by condition (0) p is
orthogonal to all generalized null vectors of C of height less
than nj. These include all elementary vectors e; corresponding
to columns of P_1 whose ordinal position in their chain is less
than nj. It follows that the elements of p in the corresponding
row position are zero. In view of (3), we can conclude that
Pij =0 if n, < nj and Pij is a diagonal matrix if n, > nj.

It remains to be shown that the diagonal elements are zero if
n, > nj.

p has nonzero elements at most only in those row positions
corresponding to colums of P'1 which are generalized null vectors
of C of height nj. Let there be m colums of height nj
belonging to chains of length greater than nj. The submatrix
consisting of these m colums is of rank m, since P-1 is
nonsingular. Moreover, the nonzero elements in these columms
are confined to those row positions corresponding to the ordinal

positions in Pl

of the colums themselves. Deleting the zero
rows would give a nonsingular m by m submatrix. The orthogonality

of p to each of the m colums, as required by condition (0)
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implies that a linear combination of the rows of the latter submatrix
vanishes. Therefore the coefficients in the linear combination
vanish. But these include all of those elements of p which are

the (nj, nj) elements of blocks Pij for which n; > nj.
In view of (3), the desired conclusion follows. Thus all the
elements of P, are zero except those of the principal diagonal
of square submatrices Pij' Furthermore, for a given Pij’ the
elements of the principal diagonal are equal. But if P4 is of
this form, then so is its transpose, (P4)'° Also, any matrix
of this form commutes with C3° Thus (P4)'C3 = C3(P4)' or,

) 1 -
taking transposes, P,C , = C ,P,. lence, CI = P 1CIP. That is,
g 4“3 34

CI = ¢ and thus is the pseudo inverse of C according to the
above definition. The uniqueness follows since c! was shown
to be unique [70].

In view of Lemma 4.1, in the sequel CI will be used to
designate the pseudo inverse of a matrix C in Jordan form,
whether it is defined by equations (1) and (2), or by equation (3).
We now establish that the pseudo inverse given by equation (3) of

an arbitrary n by n matrix A exists and is unique.

Theorem 4.5: If A isan n by n matrix, then A" exists

and is unique. Furthermore, A" satisfies the following

AMA = A (11)
Ataat = A, (12)

Proof: The existence of CI satisfying equations (1) and

(2) is guaranteed by Theorem 4.2 and the work of Penrose [70]. The
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existence of A’ then follows immediately from Theorem 4.1 and

lep - Pz'lclpz, where both P and P
1

satisfy condition (0). Then C - PP,~ CIPZP-l. We wish to show

equation (3). Suppose A = P~ 5

that if P and P2 each satisfy condition (0) with respect to A,

then PZP-l satisfies condition (0) with respect to C. There

|
exists a permutation matrix R such that. C1 = R CR, and
therefore
_ -1 -1
C-= PP1 CPlP ,
- - ]
where P1 = RPZ‘ As P2 1. P1 1R represents a mere rearrangement
of the colums of P,”!, P, satisfies condition (0) if P, does.

It is sufficient, therefore, to show that PlP_1 satisfies
condition (0) with respect to C if P and P, satisfy condition
(0) with respect to A. We use p; to designate row i of P
and pj to designate colum j of p L, Similarly p; will
designate row i of P1 and lpj will designate colum j of
Pl—l. Suppose ey is a generalized null vector of maximal height
m of C. Then ka and pk will be generalized null vectors of
maximal height m of A. If PPl-1 =Q-= (qij), to confirm

condition (0) for Plp-l, we need to show that if e, , t # k 1is a

t’

generalized null vector of maximal height m of C, then
n

qitqij = 0, and secondly if e t # k 1is a generalized

i=1
null vector of C of height at most m, not of maximal height m,
n : *
—_ _ = Jj
then 9955 = 0. Now qij (ip?, P; ). We now prove the

i=1
first part. By condition (0) for P, (1%, 1P = 0. Let
1

{p s}2=1 be the set of generalized null vectors of maximal height
- - m * i
m which appear as colums of P 1. Since p =P 1(Pp) = I (P,Pi )P1

i=1
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we have

t * i
Po= (P> P ) P (13)

II.M:J
—

1

1

<
\P

"
oS

1 * 3
P, Py) P (14)
i=1

t * k * . . . . .
where (lp ’ pl ) = (lp ’ pl ) =0 if i # 11’ 12’ ) lua
since by condition (0) 1Py .and 1P, can be expressed uniquely

i
as linear combinations of p S, s=1,2, ..., u.

Hence,

t * . n k- * .
0=(z (p,p;) P, I(p,>p;)P)
i=1 i=1
n
t * E x
= I (p,p;) Gpspy)
i=1
n —
= I Q:, 9:
j=1 1t ik
n

Therefore, = Q¢ Gk = 0 as was to be shown. We now prove the
i._

second part. If e, t # k is a generalized null vector of height

t’
®
at most m, then (1pt, 1pk) = 0 by condition (0). Now (lpt, P; ) =0

for i = il’ iz, R |

k _* _,~ ¢ 3
u? and (1p, pj ) =0 if p’ is not a

generalized null vector of maximal height m.

Hence,
n
t ® E x
0 = I (1p,pj) (1p,pj)
j=1
n —
= D% Yk
i=1
Therefore, n
I Q585 = O
i=1

as was to be shown.
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Using Lemma 4.1, C' = pp,"Ic TP p7?

12 -
5 P SR o
P2 C1 P, = A" and A 1is unique.

Thus, P CP =

Equations (11) and (12) follow from the definition and
equations (4) and (5).

The question that naturally comes up now is whether a
unique pseudo inverse could have been obtained with a less severe
restriction on P than that given by condition (0). Suppose we
only required that any generalized null vectors of maximal height
k which appeared as colums of Pm1 be orthogonal to all general-
ized null vectors of A which are of height less than k. The

following is then a counterexample to Lemma 4.1, and thus to

Theorem 4.5.
Let
0 0 0 [1 0 0] 1 0 0
c = lo o 1} P= |1 1 o pl = |1 1 o
0o o of, \o o 1}, 0 0 1

1
The above condition is satisfied as (0, 0, 1) 1is the
only column of P—1 of height two and it is orthogonal to all null
vectors of C. It is easily verified by direct multiplication that

C = P IcP. From Theorem 4 it follows that

0o 0 0
- 0 0 0
0o 1 o

1.1

However, calculating C' PC'P we get
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0 0 0
¢t = plcdp = o o o 4 b,
11 0
1

Lemma 4.2: Let PAP~ = (C where C is the Jordan canonical
form for A. If x 1is a generalized eigenvector of height k for
A corresponding to the eigenvalue u, then Px is a generalized

eigenvector of height k for C corresponding to u.
Proof: We first note that
A-uD® = @l -un® = Pl - unpp® -
plec - un)p

for any positive integer n. By assumption (A - uI)k'lx # 0. This
implies that P-l(C - uI)k'IPx # 0 and hence that (C - uI)k'IPx # 0,
Likewise (A - uI)kx = 0 implies that (C - uI)kPx = 0. Hence Px
is a generalized eigenvector of height k for C corresponding

to the eigenvalue u.

Theorem 4.6: If u 1is a non-zero eigenvalue of A and x
is the corresponding eigenvector, then u'1 is a non-zero eigen-
value of A" and x is the corresponding eigenvector. If A has

rank r, then A" has rank r.

Proof: If u 1is a non-zero eigenvalue of A with

eigenvector x, then Ax = ux. Hence A'Ax = uA'x. But this implies

1 1 -1.1

that P lclpp~lcpx = watx, or P lclepx = wA™. But if x is

an eigenvector of A, then y = Px is an eigenvector of C
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corresponding to u by Lemma 4.2, From the form of CIC given by

Theorem 4.4, it follows that CICy = y. Thus

P-ICICPx = x = uA'x.

Since u # 0, the result then follows from the division by u. It
follows from Theorem 4.3 that the rank of A is the same as the rank
of A'.

In general, the property that @Al = A does not
carry over to the pseudo inverse defined above. The next theorem
gives us necessary and sufficient conditions for (A.+)+ to be
equal to A provided that no two maximal chains of generalized

null vectors of A are of the same length k for k > 1.

Theorem 4.7: Assume A 1is such that the length, k, of
each cahin of generalized null vectors of A 1is different for

k > 1. Then (A.+)+ = A if and only if there exist a matrix P
y

1

such that PAP ~ = C, where C is a Jordan canonical form of A,

and in addition to property (0), P has the property that for each
chain of generalized null vectors of length, say k, of A

1

appearing as colums of P ~, the null vector of the chain is

orthogonal to all the other generalized null vectors of height at

most k which appear as colums of pL,

Proof: First we show that (CI)+ = C. Let Cl’ CZ’ o v ey
Ck~l be the Jordan blocks of C corresponding to non-zero eigen-
values of A, and C be the matrix which is the direct sum of all

Jordan blocks corresponding to the zero eigenvalue. Then
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C = diag (Cl, CZ’ e ey Ck-l’ Ck) .

It follows from Theorem 4.4 that

I . -1 -1 -1 T
C" = diag (C1 , C2 N Ck-l , Ck ) .

Let D be the Jordan canonical form of CI with
D = diag (D}, Dy, -« + +, D _;, D)

The summands of D can be chosen so that there exist Pi’ i=1, 2,

. . ., k such that c.l - P.'lD.P., i=1,2, ..., k-1 and
i i Yiti
CkT = Pk'lePk . Hence
I+ _ .. ‘1, -1 -1, -1 S TS T
*cH* = aiag ;"D 'p;, P, 70,7, L L L, B A S
-1, T
P D P

diag (Cj, Cpy + + +5 G35 G)
= C.
I.+
Hence (C) = C.

Suppose P has the property described in the theorem.

10+ + +» X With x; = Al'lxl is a maximal chain of

Then if x
generalized null vectors of A which appear as colums of P’l, then
Xps o v 00 Xy with X1 = (A.+)ixk is a maximal chain of generalized
null vectors of A'.

Partition C with C = diag (Cl’ e e ey Ck) where the
C;»1i=1,2, ..., k are the Jordan blocks of C. If C; is a

Jordan block corresponding to a non-zero eigenvalue of A, let
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Q; be that matrix such that Ci'1 = Qi'lDiQi, where D; is the

Jordan form of Ci'l.

If Ci is an n, by n, Jordan block
corresponding to the eigenvalue zero, then let Qi be the n, by n,
matrix all of whose elements are zero except the elements on the
diagonal from the (1, ni) position to the (ni, 1) position. Each

of the elements on this diagonal is one. That is, in this case Qi
is a permutation matrix which reverses the order of the columns of

a matrix when the matrix is multiplied on the right by Qi' Also,

in this case Qi'1 =Q;. Let Q= diag (Q, Q, - - ., Q). Now

c' = Q' where D= diag (0, D,, . . ., D). Thus A" =P Qg 'nep.
Since P has the property described in the theorem, QP has property

(0) with respect to A'.

Hence (A")" = P'lQ'lDIQP. Also, Q has property (0) with

respect to o Consequently, C = (CI)+ = Q"lDIQ. Thus A = P lcp =
plglplgp = "',
Now assume that (A.+)+ =A. Let D be a Jordan form for
A*. Then P lclp = RImR, or
¢l = prilppe! (15)
Also si At 1.1 -1
sosince (Ay" _a a=rIplR = plep, or
c = priplpe? (16)
Let S =R L. Partitioning CI, D and S1 and

using the same sort of reasoning as in Lemma 1 we can replace equation

(15) by
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I -1 -1
C1 0 S1 0 S1 0 D1 0
= (17)
I -1 -1
i 0 C, ] 0 S, 0 S, 1 L 0 D,
where CzI and D, are the nilpotent parts of CI and D, respectively.

Now ClI = Cl'1 and CzI = CZT. Similarly, equation (16) can be

replaced by
i o -1 1 o -1 7T (L1 7
c, o s, o s, 7t 0 p,t o
= ' (18)
0o ¢ |o st Lo s, {0 b

Without any loss of generality, we can assume that C, = D,. A conse-

quence of (17) is that

, Gy (19
Also, from (18) we gst that

cs.t = s

25, 2 G (20)

_ o -1
Let Sij = (Skl) be a nij by mij partition block of S, ©. Suppose

nij 2 m. It is easily verified by direct multiplication that

equation (19) implies that every element of Sij below the diagonal

containing St m..” S2.m.-1° etc., is zero. Similarly, (20) implies
’ ij ’ ij
that every element of Sij above the diagonal containing Sn. . .1’
ij°
snij'l’z’ etc., is zero. If nij~5 mij’ then (19) implies that every
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element of Sij below the diagonal containing Snij’l’ Sni.-l,Z’ etc.,

is zero, and (20) implies that every element of Sij above the

diagonal containing s y S , etc., is zero. Thus, the two
1,m..” “2,m..-1

ij ij ]
equations, (19) and (20), imply that the partition blocks of S,

are sero if the blocks are not square and are of a diagonal form
otherwise. Since the chains are each of a different length, the
only square blocks of 82~1 are on the diagonal of Sz-l.

Now let Alx) =s;, §=0,1,...,k1, be amaxinal
chain of generalized null vectors appearing as successive columns
of P_l. Since D, = C,s there is a corresponding maximal chain of
generalized null vectors of Af, say (A.+)jy1 = yj+1, j=0,1, ...,

1

k-1, which are colums of R ~. The fact that (A.+)+

A implies that

s
Ay, =y

is a maximal chain for A. Thus Yy is a null vector for A.
Furthermore, cince R has prdperty (0), Y1 is'orthogonal to all

generalized null vectors of A" of height at most k. From the

1 -1.-1

form of Sz'l, using the relationship R~ = P "S™", one can deduce

that Y is a scalar multiple of the generalized null vector Xp
maximal height k appearing as a colum of P'l. But, according

of

to property (0) for P, X; is orthogonal to all other generalized

null vectors of A of height at most k, (except itself). Let

Pl'1 be the matrix obtained by replacing each maximal chain,

X1s Xgp 0 0 vy Xy by the corresponding Yk» Yk-10 * + =2 Yo

respectively. Then Py has the property described in the theorem.
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Without requiring that the length of each chain of generalized
null vectors of length greater than one be different, one is able to
establish only sufficient conditions for (A+)+ = A. The following

is easily established from Theorem 4.7.

1

Corollary 4.1. If there exist a matrix P such that PAP " = C

where C 1is a Jordan form of A, and in addition to property (0),
P has the property that for each chain of generalized null vectors
of length, say k, of A appearing as colums of P-l, the null

vector of the chain is orthogonal to all the other generalized null

vectors of height at most k which appear as colums of P'l, then

AH* = A.

1

Lemma 4.3: Let PAP ~ = C where C is the Jordan canonical

*
form of A, and P satisfies condition (0). If B = QAQ with

* - *
Q =4Q 1, then PQ satisfies condition (0) with respect to B.
Proof: First we show that if Xy is a generalized null vector

1

of maximal height of A which appears as a colum of P ~, then Qxi

is a generalized null vector of maximal height for B. Certainly A.k'lxi #0
implies that Q*Bk-lei # 0. But, this implies that Bk'lei # 0. Also,
A.kxi = 0 implies that Q*Bkai = 0 which implies that Bkai = 0. If
Qxi e R(B), there exist a vector y such that By = Qxi. Hence
QAQ*y = Qx;. Multiplying on the left by 'Q* we have that AQ*y =X
which implies that X; € R(A). But X4 £ R(A) by assumption therefore,
Qxi is a generalized null vector of maximal height for B.
Partition Pl into its colums, say, pl. (X1 Xp « o oy X))o

Then QP—1 = (&g, &y, « -« +, Qx)). Let y, =Qx; be a colum of QP-1




which is a generalized null vector of maximal height k of B, and
y; = ij be a distinct colum of QP'1 which is a generalized null
vector of B of height at most k. Then (yi, yj) = (Qxi, ij) =

*
(xi, xj) = 0. Hence PQ satisfies condition (0).

1

- * *
Theorem 4.8: If PAP “ =C and B = QAQ , then Bt = QA#Q .

- * X
Proof: PAP 1. C and A= Q BQ implies that PQ BQP 1. C.

* * -
By Lemma 3, PQ satisfies condition (0). Hence, PQ B+QP 1 CI,

* - - *
so that PQ B+QP 1. PA'P 1. This implies that B* = QAfQ . But
patp !l = L.

We now impose some additional restrictions on the columms of

-1 1

P where PAP~

= C and C is the Jordan canonical form of A.

Condition (1): If P satisfies condition (0), and in addition,

the generalized null vectors of maximal height occurring as columns
of Pl are orthogonal to all the generalized eigenvectors of A
corresponding to non-zero eigenvalues, we say that P satisfies

condition (1) with respect to A.

Condition (2): If the null vectors of A appearing as colums

of P'1 are orthogonal to all the generalized eigenvectors of A

132

which are not null vectors of A, we say that P satisfies condition (2).

We note that for some matrices it is not possible to construct a

matrix P such that P satisfies either condition (1) or condition (2),

and at the same time transform the matrix into its Jordan canonical form.

Before establishing several properties for which the existence of

a P satisfying the above conditions is sufficient to guarantee, we

establish some subspace relationships.
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Theorem 4.9: Let X be an n-dimensional Hilbert space, and
A a matrix representation of a linear operator on X.

Then

a) X N(AT) @ R(A),

b) X = N(A) ® R(AD).

Proof: To prove (a) it is sufficient to establish that

any vector x in X can be written as y + z where y ¢ N(A+) and

z ¢ R(A) and also that the intersection of N(Af) with R(A) contains
only the zero vector. It follows from equations (11) and (12) that At
is a projection operator on R(A) and A'A is a projection operator
on R(Af). It also follows that (I - AA?) is a projection operator
on N(Af) and (I - AfA) is a projection operator on N(A). Now,

any vector x in X can be written as x = AAx + (1 - AAfx) where
M x eR(A) and (I - M )xe NA"). Assume x is in N(A"), then
AA'x = 0. If x is also in R(A), then AA'x = x. But this implies

that x = 0. The proof of statement (b) follows similarly.

1

Theorem 4.10: If there exist a matrix P such that PAP ~ = C

where C is the Jordan canonical form of A, and P satisfies

conditions (0) and (2), then .

a) RAH = RQA),
b) @A = A,
o A" = A,

y mah” = owh',
e )t = aHah
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Proof: (a) Since R(A*) = N(A)'L, it suffices to show that
R(A+) = N(A)'L. Let x be any vector in R(A+), then x is a linear
combination of columns of P-1 which are not generalized null vectors
of A" of maximal height, hence, not null vectors of A. But, the

null vectors of A appearing as colums of P'1

form a basis for N(A),
and by condition (2) are orthogonal to all other generalized eigen-
vectors of A which are not null vectors of A. It follows that

R(AY) = NA.

(b) Since R(A") = N(A)", it is easily established
that A'A is an orthogonal projection operator on R(A+). But, this

. . +,.. % +
implies that (A'A) = A'A.

* *
(c) Let xeX, then Ax eR(A) = R(A+) so that
*
Axe R(A+) . But, A*A is an orthogonal projection operator on R(A+) R

. + % * . . + % *
hence A AA x = A x from which it follows that A AA = A .

. + * +% k&
(d) Since R(A’) = R(A) we have that R(A" ) = R(A ) =
*
R(A). Let x ¢ X, then Ax e R(A). Since A is a projection

* * * *
operator on R(A) we have that AA  x = AT x. Hence mA*A'T = At .

(e) Let X1s Xg5 o 0 oy X be a basis for X such
* 4+
that X1s X5 « + .+, X Spans R[(AA)' ] and Xg41s ¢+ ¢ +» X, Spans
*® * * * *®

N(AA) = N(A). Then AAxl,.. .,AAxk spans R(AA ) = R(A).
Estend this to a basis for X with Zyalr ¢ 0 o I such that

* 4 * * *
Zsl? * + s 2y Spans N[(AA )']. Also Axl, e ey Axk spans R(A ).

Extend this to a basif for X with Yke1® * 2 Yp such that V=1
*
+ +» Y, Spans R(A ) = N(A). Using the fact that A" and A'A  are

projection operators we have the following:
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+ * *
A AA x A x, » 1= 1, 2, , k
z5 0 > i=k+1, ,
and
LS *
A A X5 X, > is= 1, 2, , k
Yi 0 > i=k+1, , N
But
* *
(AA): AA X, Xx. » i=1,2,.. .,k
i i
zy 0 + i=k+1, , N
. 4+ *4 +
Hence, it follows that (AA) = A A
Theorem 4.11: If there exist a matrix P such that PAP'1 =C

where C is the Jordan canonical form of A and P satisfies condition

(1), then
a) NAH = NaD,
b @wh’ = A,
o At =AY,
) @t = A

1
Proof: (a) It suffices to show that N(Af) = R(A) , since
*
N(A) = R(ATL. Let x be any vector in R(A), then x is a

linear combination of colums of P

which are not generalized
null vectors of A of maximal height, hence, not null vectors of A'.

By condition (1), the generalized null vectors of maximal height
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of A are orthogonal to all other generalized eigenvectors of A

which are not generalized null vectors of A of maximal height.

Hence, it follows that N(A+) R(A)'L.

(b) Since N(A+) R(A)‘L, A" is an orthogonal pro-

®
jection operator on R(A) which implies that (AA+) = AAT.

(c) Using (b) in the equation AMA = A we have
®
(AA+) A = A. Taking the conjugate transpose of this equation we

* 4 *
have that A AA = A .

(d) Let X5 0 o ooy X be a basis for X such

r+1? ¢+ + » X, Spans

* *® &
. AAXr spans R(A A) = R(A).

*®
that X1s + + +» X, sSpans R[(A A)+] and x

* *
N(A A) = N(A). Then AAxl, ..

Extend this to a basis for X with vectors =z Z_  such

r+1? * * 2 %

*
that they span N[(A A)+]. Now Ax . Axr spans R(A).

I S

Extend this to a basis for X with vectors vy AN such

410
*
that they span N(A) = N(A+) . Then using the fact that A'A and

+ c e
AA"  are projection operators we get:.

*4 * . 2
A : AAxi - Axi i=1, 2,. e, T
z; > 0 i=r+1, .y N
and
A Ax > =1, 2
i xi 1 =1, 4 » T
Yi > 0 i=r+1, , N
But
X 4 * .
(A A) : A Ax. -+ X. i=1, 2, , T
i i
z. > 0 i=r+1,...,n

1

* *
It follows that (A A = A'A™"
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1

Theorem 4.12: Let PAP " = C where C is the Jordan canonical

form of A. Conditions (1) and (2) are necessary and sufficient for

the following:

+

4 ®
1) () A,

+

AA,

) "

Proof: The sufficiency is established in Theorems 4.10 and
4.11. To show the necessity, assume P does not satisfy either
condition (1) or condition (2). If P does not satisfy condition
(1) we will show that R(A) # N(A+)J_. Let x ¢ R(A), then x is a

linear combination of colums of P!

which are not generalized
null vectors of maximal height for A. But, since P does not
satisfy condition (1), there is a generalized null vector of maximal
height for A, and hence a null vector of A+, which is not
orthogonal to R(A). Hence R(A) # N(A+)'L.

But, R(A) # N(A+)'L implies that A" is not an orthogonal
projection operator on R(A), which implies that (AA+)* # A",

In case P does not satisfy condition (2) we establish
that R(A+) # N(A)'L. Let Xx ¢ R(A+), then x 1is a linear
combination of colums of P'1 which are not generalized null
vectors of A’ of maximal height, hence, not null vectors of A.
But, since P does not satisfy condition (2), there is a null
vector of A which is not orthogonal to R(A+) . Hence R(A*) #

N(A)"L. But this implies that A'A is not an orthogonal projection

*
operator on R(A+) which implies that (A+A) # A'A.




Thus, it follows that P satisfying conditions (1) and
(2) is necessary and sufficient for the pseudo inverse defined above
to be the same as the pseudo inverse defined by Penrose. A special
case of Theorem 4.12 which is of interest in its own right is the

following.

Corollary 4.2: If A 1is unitarily equivalent to C, its

Jordan canonical form, then

D @atnt = A,
) wahH' = o

Proof: If A is unitarily equivalent to C, then there
exists a unitary matrix U such that UAU* = C. Since the colums
of U* are mutually orthogonal we have conditions (1) and (2), and
thus the conclusion by Theorem 4.13.

In particular, if A 1is normal the definitions are equivalent.

Theorem 4.13: If o # 0, then (aA)’ = o 1A,

Proof: If a = 1, the theorem is trivial, so assume that

a #1. Let P(onA)P'1 = C where C is the Jordan canonical form

of oA. Then (aA)’ = plcIp. Let C, be the direct sum of the

1
Jordan blocks corresponding to non-zero eigenvalues, and CZ’ CS’

N Ck be the Jordan blocks corresponding to the zero eigenvalue.
Then, without loss of generality we assume that C = diag

(C,, C

1> 72> ¢

D, where D, is the Jordan canonical form of a’lcl. If C,,
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oy Ck). Let Q1 be the matrix such that Ql(a Cl)Q1 =
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n.-1 n.-2
i

i=2,3...,k, is an n, by ny matrix, let Qi = diag (a , 0
., @, 1). It is easily verified by direct multiplication that

Qi(“-lci) Qi-l = D,

i where Di = Ci' Letting Q = diag (Ql, QZ’

. ey Qk), and D = diag (Dl, DZ’ o e ey Dk) it follows that
QcL'ICQ'1 =D where D is the Jordan canonical form of a XC. Then
gt = Q'lDIQ, From the form of Q, it is easily verified that
it satisfies both conditions (1) and (2). Hence, by Theorem 4.12
(a'1C)+ = (a'IC)I. But Price [73] has shown that (a_IC)I = ocl.

1 a-l

Now, PAP™! = o7lc =qlng implies that qpap™lq! = D, It is

easily shown that QP satisfies condition (0). Thus, QPA.+P'1Q'1 =
I

o' or pa'P! =g lplg.
Hence, (o)’ = p-iclp
= Pl lelgle
- 1,-1, -1+

a PaC)y P

o Ip g Iplg) p

o Ip lpatply p

= a-lAf .

Lemma 4.4: If there exist a matrix P such that PAP L = C

*
and P satisfies conditions (0) and (2), then (P ) 1 satisfies
condition (1) provided that the null vectors of A appearing as

colums of P! are mutually orthogonal.

Proof: Let X, i=1,2, .. ., n, be the colums of

- : *
P 1, and Yy, 1=1, 2, .. .,n be the colums of P . Now

n n .
{xi} i=1 and {yi} i=1 form biorthogonal bases for X. Let Xy

’
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be a null vector for A. Expanding X in terms of the Y;» We get

>
"
Wt s

(xi’ XJ) Yj

j=1

But, (xi, xj) =0 unless i=j, since P satisfies condition (2),
and the null vectors of A appearing és colums of P'1 are

mutually orthogonal. Then (xi, yj) = (xi, xi) (Yi’ yj) for any
j=1,2, .. .,n. But (xi, yj) =0 for j #1i, hence (yi, yj) =0
for j # i. Now, since X; is a null vector of A, it follows that

Y3 is a generalized null vector of maximal height for A*. Hence
") satisfies condition (1).

Theorem 4.14: If there exist a matrix P such that PAP'1 = C

where C is the Jordan canonical form of A and if P satisfies the

conditions in Lemma 4.4, then

* *
a) (A" = @),
ks X
b) AAA = A,
* %
o AfATAT = A
1

Proof: (a) Let PAP =~ = C where C is the Jordan canonical
form of A. Let C1 be the direct sum of the Jordan blocks corres-
ponding to non-zero eigenvalues, and CZ’ C3, o e ey Ck be the Jordan

blocks correspohding to the zero eigenvalue. Without loss of generality

*
we assume that C = diag (Cl, CZ’ « e ey Ck). Hence, C = diag
* T T . * .1
(C1 , C2 s o e ey Ck ). Let Q1 be the matrix such that Q1C1 Ql = D1
*
where D1 is the Jordan canonical form of C1 . If CiT, i=2,3 ...,k
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is an n, by n, matrix, let Qi be the ny by n, matrix all of
whose elements are zero except the elements on the diagonal from the
a, ni) position to the (ni, 1) position. Each of the elements on
this diagonal is one. That is, in this case Qi is a permutation
matrixmatrix which reverses the order of the columns of a matrix
when the matrix is multiplied on the right by Qi’ and reverses the
order of the rows of the matrix when the matrix is multiplied on the

. . -1 _ T, -1 _
where Di = Ci, i= 2, 3, . . ., k. Letting D = diag (Dl’ DZ’ e ey Dk)

*

and Q = diag (Ql’ Qs - v - Qk) we have QC Q 1. D where D is the
-1 -1 x %
AP =

* *
Jordan canonical form of C . Now, PAP = = C implies that P

* -1 s e *-1
C =Q "DQ. This implies that QP

A*P*Q'1 = D. If y is a generalized
null vector of maximal height for A* which appears as a colum of

P*Q_l, it follows from the formof Q and y is a colum of P*

which is of maximal height for A*. But, by Lemma 4.4, (P*)-1 satisfies
condition (1) which implies condition (0). Hence Q(P*)'1 satisfies

‘s o1 k% -1 I
condition (0). Thus, we have QP “(A) PQ =~ =D,

Now Q obviously
* * -
satisfies condition (0) with respect to C so that (C )+ =Q 1DIQ.
* *
But, Q also satisfies conditions (1) and (2) so that (C )+ = (C )I,

* *
and Desoer and Whalen [36] have shown that (C )I = (CI) . Hence,

* 4+

(A) 1

p"Q 'plgp*

* * *.
prchtp L

* % X_
p chp"1

+

*
A) .
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(b) Since P satisfies conditions (0) and (2),
* *
R(A") = R(A') by Theorem 4.10(a). This implies that R(A' ) =
Rk *®
R(A ) = R(A). For any vector x in X, it follows that Ax ¢ R(A+ ).
L S . *y +% .
Since (A ) A is a projection operator on R(A ) = R(A" ), it
* * % %
follows that (A )'A'Ax = Ax and thus (A") A'A = A.
. +% . + +* +*
(c) Since R(A ) = R(A), it follows that AA'A = A

. . + +% * +
Taking conjugate transposes we get A A A = A .

0
Definition 4.2: The annihilator S of any subset S of X,

*
is the set of all vectors y 1in the dual space of x, say X , such

that (x, y) 1is identically zero for all x in S.

* *
Theorem 4.15: (A+A) and (AA*) are projection operators

on the spaces of annihilators of N(A) and N(A+), respectively.

Proof: Using the fact that A" = A'AA" we have (A+A)* =
@aatn” = )t ta*. Hence (A")" is idempotent, and thus
a projection operator. From Theorem 4.9, X = N(A) ® R(A+) , and
hence that X* = N(A;o ® R(A+jo, wnere Z0 is the space of annihi-
lators of Z. Let y be a vector in N(A)o, then for any x in X
we have (x, y) = (A'Ax + [I - A"A] x, y) = (A'Ax, y) + ([I - A"A] x, y).
But, I - A'A is a projection operator on N(A) so that (I - A'A) x eN(A).
Hence, ([I - A+A] X, y) =0 sothat (x,y) = (A+Ax, y) = (x, (A+A* y).
Since this must hold for each x in X, this implies that (A*A)" y = y.
Now assume y e R(A')°. Then for any x in X we have that (x, y) =

(A*Ax, y) + ([I - A"Alx, ¥) = ([I - A"Alx, y) since A'Ax e R(A").
Now ([I - A*Alx, y) = (x, [I-AAI" y) = x, ) - x, ") y).
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*

Hence (x, (A+A) y) = 0. Again, since this must hold for each x in
*

X, it follows that (A+A) y = 0. The other part follows in a similar

manner.

(o] * 0
Theorem 4.16: R(A) is invariant under A and R(AT) is

. . * 4
invariant under (A ) .

(o]
Proof: Let y € R(A) , then for any x in X we have

*
(x, Ay) = (Ax, y) = 0 since Ax € R(A). This implies that
x ° 0 *
Ay € R(A) and thus that R(A) is invariant under A . The

second part of the theorem follows similarly.

Theorem 4.17: Let tr(A) represent the trace of the matrix A.

Then tr(A'A) = tr (AAY) = rA) = r@ah).

Proof: The first equality is a property of the trace.
The last one was established in Theorem 4.6. We now show that
tr(AA+) = r(A). Using the properties of the trace we have that
tr(AA) = tr(P-ICCIP) = tr(CCIPP'l) = tr(CCI). But, Penrose [70] has
shown that tr(CCI) = r(C), hence tr(AA+) = r(C) = r(A).

We proceed now to explore the use of A" in solving systems
of linear equations. A method for computing A" s given and an
example is presented.

The following theorem is essentially a consequence of a

minimal property for the Penrose pseudo inverse.
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Theorem 4.18: If the system of linear equations Ax = b

is consistent, then X; = A'b is a solution of the system. If

Ax = b 1is inconsistent, then for any x in X,

-1 +
where A =P CP and X; = A'Db.

Proof: It suffices to prove the inequality (21). For if.

there exist a vector x, in X such that Ax, = b, IIP(Ax2 - b)||= 0.

Thus, if (21) is valid, ||p(Ax1 - b)|| = 0, which implies that

Ax) = b.
Now P(Ax; - b) = P(AA"b - b) = PAA'b - Pb. Using the

definition of A', P(Ax; - b) = CC'Pb - Pb. Let Pb

b, +b

1% P2
where by € R(C) and b, e R(CTL. Then P(Ax; - b) = CCI(bl +b,) -

(b1 + bz) = b1 - b1 -b, = - b2 since CCI is a projection on R(C).

Thus

[1Peax, - B)]1 = |1 byl (22)

If x 1is any vector belonging to X, then P(Ax - b) = CPx - Pb.
Since CPx € R((C),

l1ePx - by + b1 = [Ibyl] + [lcPx - byl. 23)

The inequality (21) follows immediately from (22) and (23).
Since A" is unique, the solution A'b to the consistent

system of equations Ax = b 1is unique. One might ask from whence
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comes this uniqueness. Lanczos [60] has given an indirect answer
to this question. In fact, his answer applies directly to the
solution of such a set of equations if the Penrose definition of
the pseudo inverse is used. Lanczos shows that the uniqueness for
the solution is obtained by adding conditions to be satisfied by
the solution vector x. The pseudo inverse defined by Penrose yields
the unique solution obtained by adding the condition which together
with Ax = b has the unique solution A'b.

As has been pointed out before, the colums of P-1 are a
canonical basis for A. Also, the colums of P* are eigenvectors
or generalized eigenvectors of A*. Now if yj is a generalized
null vector of maximal height of A* which appears as a colum of P*,
then the j-th colum, X3 of P! is a null vector of A and,
consequently, a generalized null vector of maximal height of I\
But if x ¢ R(Af), then x 1is a linear combination of columns of P'1
which are not null vectors of A. This means that, if X is the set
of all generalized null vectors of maximal height of A* which appear
as colums of P* and Xl is the linear span of X, then R(A+) = X1 .

Thus, if X; = Afb, then Xq satisfies the system

A b
) X, = (24)
G 0

~ &
where G is a matrix whose colums span X The fact that the

1'
A% ~%
colums of G span X, implies that the colums of G do not

belong to R(A*). Hence( . ) has rank n. Hence, the auxiliary
G




condition is that éxl = 0 or in words, x; must be orthogonal
to all generalized null vectors of maximal height of A*.

To obtain a computational procedure for obtaining Af, we
begin with a factorization of A. Let B be an n by r matrix of
rank r such that A = BG. Now Bi = (B*B)'IB* is a left inverse
of B and G = G*(GG*) 1 isa right inverse of G. Making use of

equation (11), we have

GA'B = I (25)

where Ir is the r by r identity matrix. Let B be an n-r by n
matrix such that if x 1is a colum of ﬁ, then x 1is a generalized
null vector of A of maximal height, say k, and x is ortho-

gonal to all generalized null vectors of height at most k. In

other words, the colums of B could be chosen as colums of P'1
which are generalized null vectors of maximal height for A. Then
the partitioned n by n matrix (B, ﬁ] has rank n. Furthermore,

since a generalized null vector of maximal height for A 1is a

null vector for Af we have

AB = 0. (26)

" = 0. 27

G
The matrix ( b ) is an n by n matrix of rank n. Combining

equations (25), (26) and (27) we have
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G A" [B, B] = I 0
G 0 0
and solving for A" we get
-1
G Ir 0
N | (B, B]'1 (28)
G 0 0

In view of equation (28) the first step in the computation of At

is the determination of G and G. Theorem 4.1 gives us a technique
for obtaining the generalized null vectors of A of maximal

height. These orthonormal vectors are colums of B. G is obtained
by computing the appropriate vectors in the dual chains.

We compute a simple example to illustrate the technique.

Consider the matrix i 2 -

4 -3
A = -2 0 1
| 2 2 -2

The rank of A is 2. A null vector of A is X, = a, 1, Z)T. We

solve the system of equations

]
o

X2

to obtain x, = (2, -4, 1)T. The rank of A? is one which is the

147



148

same as the rank of A;. So we conclude that X, is a generalized
null vector of maximal height 2 for A and the only colum of B.
Now sz = (-3, -3, -6)T = X3. The single row of é is the transpose

of the solution of

*
aH? $
sz 0
T
Xz y = 0

where ¢ is the three by one null vector. This solution is

y = (-1/18, -1/18, -1/9)T. Let

B = 2 1 and G = 2 0 -1
-1 0 0 2 -1
S 1 1 -
Then
+ -1 -~ -1
NG ) 0 -1 1 0 0 2 1 2
0 2 -1 0 1 0 10 -4
-1/18 -1/18 -1/9 0 0 0 1 1 1
= [s/12 -1712 -3 ] (1 0 0] C4/3 13 -4/3
-1/12  5/12 -3 0 1 0 100 2
-1/6  -1/6 -6 0 0 o] Y3 -3 1/
23 5 -26
= 1/36 -19 -1 34
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4.3. Pseudo Inverses of Non-Square Matrices

We now proceed to investigate pseudo inverses of not necessarily
square matrices on finite dimensional Hilbert spaces. Let X and Y
be finite dimensional Hilbert spaces of dimension m and n, respectively.
Let A be a linear transformation from X into Y. We will represent

the set of all linear transformations from X into Y by [X, Y].

Definition 4.3: Let A ¢ [X, Y]. A pseudo inverse of A will

mean a linear transformation A' e [Y, X] such that

M'A = A, (1)
At = A" (2)

Theorem 4.19: Let A e [X, Y]

a) If B e [Y, X] such that ABA = A and
BAB = B, then X = N(A) ® R(B) and Y = R(A) ® N(B).

b) Conversely, if U and V are subspaces of X and Y,
respectively, such that X = N(A) ® U and
Y = R(A) ® V, then there exists a unique B such
that B e [Y, X] and ABA = A, BAB = B with

R(B) = U, N(B) =V.

Proof: (a) Let xeX. Then x can be written as BAx + (I -BA)x

where BAx € R(B) and (I - BA) x ¢ N(A). Assume x is in N(A)
and also in R(B). Then Ax = 0, and there exist a vector y in Y

such that By = x. Hence ABy = 0 which implies that BABy = 0.
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Now BAB = B so that By = x = 0, Hence X = N(A) ® R(B).
The fact that Y = R(A) ® N(B) follows similarly.

(b) To show this part, let U and V be as required.
Let X1o Xgs o o oy Xgy Xipgs o 0 vy X be a basis for X such that

X1» X35 « o ¢, X Spans U, and X, 41» X -» X, spans N(A).

r+2’ . .

Then Axl, sz, . e oes Axr spans R(A). Choose Yre12 Ype2r =+ o0 Vp

so that Axl, sz, e ey Axr, Yrs1? * ¢ 2 Y is a basis for Y.

Define B as follows:

B (Axi)

1]
o]
[

"
-

-
N

-
e}

By, = 0 i=r+1,...,m

By Paige and Swift [69] this determines B uniquely. It follows
from the construction of B that N(B) =V and R(B) = U. Also,
it follows immediately that ABA = A and BAB = B.

In view of Theorem 4.19, any conditions which are sufficient
to determine a unique pseudo inverse are equivalent to a specification
of the null space and range of the pseudo inverse in question. We
note that for the Penrose pseudo inverse, AI, that N(AI) = R(A)J'
and R(AI) = N(A)'L. Also, for the definition given in (3) we note
that R(A+) =X, where X is the linear span of the set of all
generalized null vectors of maximal height of A* which appear as
colums of P*, where of course, P satisfies condition (0). Also
N(A*) is the space spanned by thé set of generalized null vectors

of maximal height of A which appear as colums of pl,
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Definition 4.4: let X=S®T. If x=s +t is an element

of X, the linear transformation mapping X onto S such that s
is the image of x under this transformation is called the projection

of X onto S along T and will be denoted by P If

S/T*
S =T, then it is an orthogonal projection and will be denoted

by PS.

Theorem 4.20: Let X =S ® T. Then P satisfies the

following:

1) Ps exists and is unique
2) Ps is linear
3) P Pg = Pg
4) PS is an orthogonal projection if and only if
=pT_-pl
Pg = Pg = PS".

Proof: These are well known results and are included for

completeness. They>may be found in Paige and Swift [69].

Theorem 4.21: Let A e [X, Y] and B e [Y, X] with B a

pseudo inverse of A. Then

1 AB = Preay/N)

2) BA = Prpy/Ne

Proof: We establish (1), and (2) is established in a
similar manner. Let x be any vector in X, then x =y + z, where
y ¢ R(A) and z ¢ N(B). Since ABA = A we have that (AB) (AB) = AB

so that AB is a projection. Also ABx = ABy + ABz = ABy. But
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y € R(A), hence there exist a vector u such that Au = y.
Therefore, ABx = ABAu = Au =y, Hence AB = PR(A)/N(B)'
Now, if A e [X, Y] and B e [Y, X] with R(A) = N(B)
and N(A) = R(B) , then B is the Penrose pseudo inverse of A.
For the remainder of this chapter, we will designate this unique ‘

pseudo inverse by AL,

Theorem 4.22: Let A ¢ [X, Y] ,A# = AIAB and AS = BAAI,

where B is any pseudo inverse of A. Then A# and AS are

pseudo inverses of A.

Proof: By direct substitution into the equations
defining a pseudo inverse for A, and using the fact that B

satisfies these equations we get

# S

Mso A'AAT < A'ABAATAB = A'AA*MB = A'AB = A", Similarly, A
is shown to be a pseudo inverse of A.

A more general result is given in this next theorem.

Theorem 4.23: If B and C are any pseudo inverses of A,

then AS = BAC 1is a pseudo inverse of A.

Proof: By direct substitution again we get

AMSA = ABACA = ACA = A

and
S, S _ _ _ _ 48
ASAAS = BACABAC = BABAC = BAC = AS,

Hence BAC is a pseudo inverse of A.
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This seems to indicate a relationship between any two

pseudo inverses of A. The existing relationship is established in

the next theorem.

Theorem 4.24: Let B and C be any two pseudo inverses

of A, then there exist nonsingular P and Q such that

c = Rl
Proof: Let X1s Xps o 0 ey Xy X1y o 0 oy X be a basis
for X such that Xy, X5, + + 4, X Spans R(B) and Xop1 Xpg2s = 0 o

X spans N(A). Now Ax

n 12+ o+ o Axr spans R(A). Complete this

to a basis for Y by selecting y 412+ v 2 Yy SO that they span

t

1
N(B). This completely defines B. Likewise, let x 10 X 20+ v o

1 ! 1 |}
P X el s o X be a basis for X such that x

1

1
X . spans R(C) and x

1]
X 1P X0 + v o

]
oy, X spans N(A). Now Ax'

r+l®* * ° n 1

.y A p Sbans R(A). Complete this to a basis for Y with

1

1 !
Y 12t 0 0 Ve so that vy

r+12 * ¢+ +» Y sSpans N(C). Define

P and Q as follows:

Px = X i=1, 2, , N
i i
!
QlAx;) = Ax i=1, 2, , T
'
le = Y3 i=1r+1, m

It follows from the above that A = Q'lAP = QAP'1 and
that C = pBQ™L .

Corollary 4.3: Let B be a pseudo inverse of A, then PBQ'1

is a pseudo inverse of A if and only if Q'lAP is a pseudo inverse of
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Proof: Let PBQ-1 be a pseudo inverse of A. This implies
that PBQ IAPBQ™! = PBQ™! and APBQIA = A. Hence (Q7lAP) B(QlaP) =
QlarsQ)p = Q7 lAp and BQlAP)B = P (pBq laPBq 1)q = P l(PRQ ) = B.
Hence Q-lAP is a pseudo inverse of B. The converse is
established in a similar manner.
Consider the system of linear equations given by Ax = b,
where x and b are vectors. A necessary and sufficient condition
that a solution exist is that b is in the range of A. In case
b # R(A), the least squares solution is given by x = AIb where

I

A~ 1is the Penrose pseudo inverse. However, if B is any pseudo

I

inverse of A, and A# = BAA", then x = A#b is also a least

squares solution. This is the conclusion of the next theorem.

Theorem 4.25: Let A# = BAAI where B 1is any pseudo

inverse of A, then Xy = A#b is a least squares solution to the

system of linear equations given by Ax = b.

Proof: Consider |[[Ax; - b||. Substituting in for X, we
# I I
get ||Ax; - b|| = ||AA'y - y|| = ||ABAATy - y|| = [|AATy - y]].
The result follows from the work of Penrose [70].
We also note that the following theorems hold for any

pseudo inverses, not necessarily just the Penrose pseudo inverse.

Theorem 4.26: For the matrix equation AXB = C to have a

solution X, a necessary and sufficient condition is that AA#CB#B =C

in which case, the general solution is

#

x = A'cg?

+ v - Afaysp®
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where A#, B# are any pseudo inverses of A and B respectively,

and Y 1is arbitrary to within having the dimensions of X.

Proof: If X

1 satisfies AXB = C, then

C= AXB = amaxee’s = aafca’s.

Conversely, if C = AA#CB#B, then A#CB# is a particular solution.

For the general solution, AXB = 0 must be solved. Any expression
of the form X =Y - A#AYBB# is a solution of AXB = 0. Hence the

conclusion follows.

Theorem 4.27: A necessary and sufficient condition for the

equations AX = C and XB = D to have a common solution is that

each have a solution and AD = (B.

Proof: If AX=C and XB = D have a common sulution then

clearly each has a solution and

AXB BC

AXB AD

so that CB = AD. In order to obtain the sufficiency of the

condition, let

x = aAfc + " - A'ams’

where A# and B# are any pseudo inverses of A and B, res-

pectively. It is easily verified by direct substitution that this

is a solution provided AD = CB, mfc=c ana s - D.




CHAPTER 5

APPLICATIONS

5.1 Linear Systems of Equations:

We first consider the system Ax =y, where A is a p by
n matrix of constants, x is an n by 1 vector of unknowns
and y is a p by 1 vector of constants. There is no easy way
to decide whether this system is consistent. The following is a
simple technique using the Rao definition 2.4 of a pseudo inverse
A" of A to check for consistency and once consistency is estab-

lished the solution is immediate.

Lemma 5.1: Let A'A=H for a given pseudo inverse A . Then

a) W =H

b) Al=A

c¢) The solutions of Ax = 0 can be expressed as (H - I)z
where z 1is arbitrary.

d) A general solution of Ax =y, when consistent, is
Ay + (H- I)z.

*
e) q x has a unique value for all x satisfying the

* *
equations Ax =y, if qH=q .

Proof: a) Since, by theorem 2.5, AA'A = A, premultiplying by
A" gives ATAAA=AA or He = H.
b) Also, by Theorem 2.5, A(A"A) = A which implies
that AH = A,
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c) Since AH =A, r(H) > r(A), where r(:) is
the rank of (*). But, A'AH=H so that r(H)> r(A). Hence,
r(H) = r(A). Also r(H-I)=n-rH) =n - r(A). Since AH - I) =
0, the colums of H - I supply all the solutions of Ax = 0. Hence,
a general solution is (H - I)z where =z is arbitrary.

d) Since A’y is a particular solution of Ax =y,

the general solution is Ay + (H - I)z.

*
e) Substituting in q x a general solution of
x . * . * * x
AX=y weget q [Ay+ (H-1)z2] =qAy+qHz-qlz=qAy
* *
if qH=gq .
To avoid complications make A square by adding zeroes.
Recall that given a matrix A, there exist a non-singular B

such that BA = H where H has the following properties.

a) The diagonal elements are 0 or 1.

b) If the ith diagonal element is 1, all elements in

th

th column and all elements preceding 1 in the 1 TOW

the 1
are 0.

c) If the jth diagonal element is 0, all elements in

h

the jt row are 0, and also those below the 0 diagonal ele-

th

ment in the j colum.

Define the matrix G as a diagonal matrix with its ith
diagonal element 1 if the ith diagonal element of H is 0,

and 0 otherwise.

Theorem 5.1: With A, B,H and G as defined above the

following are true:
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2

a) H H (H 1is idempotent)

b) AH=A

¢) ABA=A and hence B is a pseudo inverse of A by
definition (2.4).

d) Ax =y is consistent if and only if GBy = o, i.e.,

if the ri:h, rtzzh, « « +, Tows of H are null, then the rih, rtz:h,

. » ., €lements in By must be 0.

e) A general solution of Ax =y is By + (H - I)z where

z 1is arbitrary.

*
f) q x 1is unique if and only if when x satisfies Ax =y

* *
we have qH =q .

Proof: a) This is established by direct multiplication.

b) Since BA =H and B is non-singular, we have
that A = B'ly. Hence, AH =B 'H? and by (1), B % =3lg=A.
Thus, AH = A.

c) Since BA =H, ABA = AH = A,

d) Since B 1is non-singular, if Ax =y is
consistent, so is BAx = By or Hx = By, and conversely. If the

rth row of H 1is zero, then the rth element of Hx is zero

th

and so must be the r element of By. Conversely, if this is

true x = By is obviously a solution of Hx = By.

e) and f) are established as in lemma 5.1.

If, in addition to B, we know which of the rows of H are null,

we have an automatic test for consistency of Ax =y, while finding a
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solution. Let the rih, rgh, v e ey rﬁh rows in H be null. Then

we need only compute By and examine whether the rih, o e ey rﬁh

elements are* 0. If they are, the equations are consistent, in

which case By itself is a solution. It is important to note that B
is a non-singular inverse, although A may be singular. This is
necessary for the consistency test given in (d). The Penrose pseudo
inverse is necessarily singular if A is singular, but if the System
is known to be consistent, it can be used to obtain a general solution

of Ax =y, as is ascertained in the next theorem.

Theorem 5.2: The general solution of the vector equation
AX =y is x = Afy + (I - Aonz, where 2z 1is arbitrary, provided that

the equation has a solution.
Proof: Suppose x satisfies Ax = y. Then

Ax = ATy + A(I - ATA)z

~
1]

Ay + (A - M)z

+

AAfy since A = AAA.

Hence, Afy is a particular solution of Ax = y. For the general
solution, we must solve Ax = 0. Now any expression of the form
x=(I - AfA)z satisfies Ax = 0 and conversely if AX = 0 then
X can be expressed in the form (I - A+A)z.

We now consider more general systems of linear equations in the

next two theorems.

Theorem 5.3: A necessary and sufficient condition for the

equation AXB = C to have a solution is




M'cB'B = C,
in which case the general solution is
X = A'a* + v - a*avss',

where Y 1is arbitrary to within having the dimensions of X.

Proof: Suppose X satisfies AXB = C. Then C = AXB =
AAXBB'B = AA'CB'B. Conversely, if C = AA*CB*B, then A*GB* is

a particular solution of AXB = C. For the general solution we must

solve AXB = 0. Now any expression of the form X =Y - A*avBB*

satisfies AXB = 0 and conversely, if AXB = 0, then X = X - ATaxss®,

It follows that the general solution is as given.

It might be noted that the only property required of At

for Theorem 5.3 is AA+A = A,

Theorem 5.4: A necessary and sufficient condition for the

equations AX = C, XB = D to have a common solution is that

each equation should individually have a solution and that AD = CB.

Proof: The condition is obviously necessary. To show that

it is sufficient, put X = A'c + DB” - A'ADB®, which is a
solution if the required conditions AA'C = C, IDB'B = D, AD = (CB
are satisfied. The first two conditions come from Theorem 5.3 to
guarantee that each equation individually has a solution. Again
it should be noted that the only property required of AY is that
M'A = A

When the system Ax =y does not admit of an exact solution,

X = A+y + (I - A+A)z as given in Theorem 5.2 nevertheless gives
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a '"best" solution in the sense of least squares. That is, if y is a
vector which is not in the range (column) space of A, x = A+y + (I - AfAJz
is a vector such that Ax is the projection of y on that space. Thus
Ax 1is as ''close' to y as it can be made, or, in other words, the

sum of the squares of the residuals is a minimum. This is the con-

clusion of the next theorem.

Theorem 5.5: Let y be any n by 1 vector and X; = Afy,

where A is an n by p matrix. Then

HAX1 -yll < ||Ax - y|| for any p-vector x,

and

lelll < |1 xp 11 for all x, satisfying the above

inequality.

Proof: Let = +y, with y.e R(A) and y.,e R(A) .
Y=ty 1 2

+
ATy -y [1 = lly; -y |l = 1] y,1|. On the
other hand, for any p-vector x, let Ax = Y3 Certainly Yze R(A),

Then |lax, -y ||

2 2 2
thus HAX'YH = ||y3-y1-y2” = IIY3'YIH + HYZ
The last equality follows since the vector Y3 = ¥; 1s orthogonal to
y,- Hence, the desired inequality follows. Any vector X satisfy-
ing ||Ax; - y|| <|| Ax) - y|| is of the form x; + x, where X,

is orthogonal to X,. Hence,

Hxgl] = lIx II + [|lx;]|  from which we obtain ||x;|| < [Ix,l].
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Note that X3 is not only the least squares solution, which may
not be unique, but also the vector of minimum norm which is a least

squares solution and thus X3 is unique.
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5.2 Distribution Theory:

If x 1is a colum vector of n random variables which have a
joint n-dimensional Gaussian (or normal) distribution with mean
vector m and covariance matrix V, we denote it as x ~ N(m, V).

m

2 T . .
In this, if V=1, then y = I Xi = x x has a known distri-
i=1

bution, called the noncentral chi-square, and this is written as
2
Y*X'(n, A), where the so-called noncentrality parameter A = 1/2me.

If A =0, the noncentral chi-square is the central chi-square.

Theorem 5.6: Let the p x 1 random vector x~ N(0, V), where
r(V) = k < p. A necessary and sufficient condition that a qua-
2 . .
dratic form xTAx has a x~ distribution is that V is a pseudo

inverse of A by definition (2.4).

Proof: The result is well known when V is nonsingular.
In any case V can be writtenas V = CDCT, where C 1is an orthogonal
matrix and D is a diagonal matrix with non-negative elements.
Consider the transformation y = Cx. Then y is normally distributed
with mean zero and covariance matrix D. The quadratic form x’?!‘x
transforms to yTFy where F = C'AC. In terms of the new variables
in y, which are independently distributed, the condition that
yTFy has a xz-distribution is obviously FDF = F. Writing in terms

of A and C, we have

cfacocfac = cTavac = cTac .
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The last equality implies that AVA = A, which proves
the desired result. The x?-distribution has degrees of freedom
equal to the rank of VA,

Consider the particular quadratic form xTVX where
V' =c'c' and D is obtained from D by replacing the non-

zero elements by their reciprocals. Applying the test of

Theorem 5.6, we find

T T T T

VVW = cbCccepe'edec = epct = v

Hence, xTV'x has a xz-distribution with degrees of free-
dom equal to k, the rank of V.,
Since A" = A if A is idempotent and symmetric, and

At = AT

if A is idempotent but not symmetric, no attempt is
made to extend the theory of the distribution of quadratic forms
of normal random vectors. An adequate and thorough expose' of this
topic can be found in Graybill [48].

We now proceed to establish formulas for the conditional
means and covariances which are valid even when the joint distri-

bution is singular.

X

Theorem 5.7: Let [XI] be a partitioned zero mean normal
2

S = cov =
Xy BT ¢

random vector with
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cov (xl) = A, and cov (xz) = C, then the expected value of X1»

given that Xy = b and the covariance matrix of X;5 given that X, = b

are given by:

+

E(xllxz =b) = BCD

and

cov (xllx2 =b) = A- Bc*BT

Proof: We will derive the formulas for the conditional mean
and covariance of Xy, given that X, = b, by representing X; in such
a way that it is obvious what conditioning on X, means. We need
only the rule for computing covariances under a linear transformation,
i.e., if y has covariance matrix S, then My has covariance matrix
NBNP: Let y = Xy - BC+x2. Then the elements of the random vector

y have zero means, and the covariance matrix of the composite vector

ol
y I-BC Xy

is

A - BCBY B - BC'C

BT - cc'pT c

To establish that the off-diagonal blocks are 0, the




general covariance matrix V is positive semidefinite. Hence,

T

there exist a matrix P such that V = PP, Partitioning, we get

. X
T T T. 7
P PPy PPy
vV o= (P,P,)
T T T
P2 | | PoPp PoPy

and the column space of P;‘P1 lies in the column space of PT

2

which is the same as the column space of ngz . Hence, without
loss of generality we have that the colums of BT lie in the column
space of C. But, in that case CC+BT = BT since CC* is the
projector of the colum space of C. Hence, BT - CC+BT = 0 implies
that B - BC'C = 0. Thus the covariance matrix becomes

y A - BC'B! 0 ]

cov =
Xy 0 C

Hence the covariance matrix of y 1is A - BC+BT, and y 1is
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independent of X,. Because of this independence, it follows immediate-

ly that the conditional distribution of X;=y+ BC+x2, given that
X, = b, is normal with mean BC'b and covariance that of y.

It should be noted that these formulas for conditional mean
and covariance apply not only for the normal, but for any joint dis-

tribution for which zero correlation implies statistical independence.
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5.3. Incidence Matrices:

In this section, the properties of the Penrose pseudo inverse
of an arbitrary incidence matrix are examined in connection with the
properties of the network flows in the corresponding directed graph
and a simplified computational method for the pseudo inverse of an
arbitrary incidence matrix is developed.

We begin by defining several terms:

By an incidence matrix, we shall mean a matrix which has

exactly two nonzero entries that are 1 and -1 in each colum of
the matrix and has no zero rows.

Any two rows of an incidence matrix are said to be directly
connected with each other if there is a colum which has nonzero
entries in both rows. Any two rows, 1 and j, of an incidence

matrix are said to be indirectly connected with each other if there is

a sequence of rows which starts with the ith row and ends with the jth

row, (i, kl’ k2’ o o ey kl’ j), in which every two adjacent rows in
the sequence are directly connected. Any two rows of an incidence -
matrix are said to be connected if they are directly or indirectly

connected.

A connected component of an incidence matrix is a sub-

matrix which consists of a set composed of rows, each pair of which
are connected and none of which are connected with any other rows not
in the set, and a set composed of all the colums which have nonzero
entries in the rows in the set.

An incedence matrix is said to be a comnected incidence matrix

if it has only one connected component; otherwise it is said to be a
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separable incidence matrix. Then, by definition, a separable inci-

dence matrix can be brought inrto the following form by suitable row

and column interchanges;

T, 0 ]

where Ti’ i=1, 2, .. ., k, is the matrix of the ith connected

component.,
Lemma 5.2: If A is an m x n matrix of the form
- -
A1 0
)
A =
k
where A., i=1,2, .. .,k,isan m. xn, matrix and £ m, = m,
i i i j=1 1

k
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where A; is the pseudo inverse of Ai’ i=1;,,1, ..., 1.

Proof: Let

>
1]

+
0 Ak

Then we can easily verify that Penrose's four equations,

MA = A,
MA = A,
M=,
Moo= A,

are all satisfied. Therefore, A satisfies all the conditions re-
quired for the pseudo inverse of A and by the uniqueness property

of the pseudo inverse,

+

A = A

In the following discussion, we shall deal with only a connected
incidence matrix, since the pseudo inverse of a separable incidence
matrix can be derived by adjoining a set of the pseudo inverse of its
connected components as shown in the above lemma and by making necessary
row and colum interchanges. This follows since for permutation matrices

+ +
P, and P,, (PjAP))" = P,A'P,.
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Theorem 5.8: For any connected m x n incidence matrix T,

I-TT =%E, (1)

where I is the mx m identity matrix and E is the m x m matrix

whose elements are all equal to 1.

Proof: By the property of the pseudo inverse,

+

TTT =T (2)
hence

(1-TT'T) = 0 (3)
This implies that if the kth colum of T has 1 in the ith TOW

h row, then the elements of I - TT'  for columns

and -1 1in the jt
i and j must be the same. Since T 1is connected, all columns

of I-TT" are identical, and also since I - T is symmetrical
by the property of the pseudo inverse (i.e., T = (TT+)*), all
rows of I - TI" are identical. Hence, the elements in I - TT"

are all identical. However, since I - T is idempotent, i.ec.,

a-thHe=1-1" - -1m'rhH = 1- 1T, (4)

all elements in I - TTI' are equal to 1/m.

Lemma 5.3: Let T be the pseudo inverse of an m x n con-

nected incidence matrix T and let e be the m-component column




vector whose elements are equal to 1. Then
Te = 0. (5)
Proof: Since by definition
eT = 0 (6)

the lemma follows from P28 in chapter 3.

Theorem 5.9: An m x n connected incidence matrix T contains

at least one linearly independent set of m - 1 colums by which any
colum of T can be expressed uniquely as a linear combination of the
colums in the set.

Such a set is called a basis of T.

Proof: Choose an arbitrary row, R,, in T. Let Ry be

the set of all rows which are directly connected with the row R,;

Ry be the nonempty set of all rows not in RjURjU . . . UR. which

i-1
are directly connected with at least one of the rows in R, ;. Since
T is connected and R, Rj =0 if i# 3, every Tow in T belongs
to one and only one of Ry, Rj, . . ., Ry, | <k <m - 1. Choose
one colum for every row in R, which connects the row with any

one of the rows in R, ;, and let C; be the set of such colums.
Then the number of colums in Ci is equal to the number of rows in
R; and C; Cj =p if i # j, hence the set C = CUCU . . . UG,
consists of m - 1 colums.

Then every row is connected with the row R, by colums in C,

hence every row is connected with every other row by colums in C.
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Thus for any two rows in T, say the r}h row and the rﬁh TOW,

there exists a sequence of colums in C, (cl, Cos v o s Ck-l)’

where c = £=1,2,. .., k1, directly connects the,rti:h TOW
and the rlf? row. (We shall assume that in the sequence of rows
(rl, Ty o o oy rk) no two colums are identical.) If the jth
colum of T, denoted by cj, has 1 in both the rih row and
-1 in the rih row, then Cj is expressed as
k-1

C. = < + , 7

;s e )
where the plus sign is taken if Cy has 1 1in the rzh —
and the minus sign is taken if ¢, has -1 in the rth row. Such

L L
a sum with signs being adjusted according to the directions of arcs

will be called a sign-adjusted sum.

Furthermore, every row in Ry has only one colum in C1 uc,u

. . UC i=1,2, ..., k, which has a nonzero element in the

i’
row. Hence, if a linear combination of colums in C is equal to the
zero vector, the coefficients in the linear combination for the
colums in Ck must be all equal to zero. This implies that the
coefficients for the colums in Cx.q1 must also be all equal to

zero, which in turn implies that the coefficients for the columns

in Ck~2 must also be all equal to zero, and so on. Thus, every
coefficient must be equal to zero in order to have a linear combina-
tion of colums in C equal to the zero vector, hence C is linearly

independent. Therefore, any colum of T can be expressed uniquely

as a linear combination of colums in C.
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Using the above theorems, we derive a method of calculating T as
follows. Without loss of generality, let us assume that the first
m-1 colums of T form a basis and let T be partitioned into
[U: V], where U isan mx (n - m + 1) matrix whos? colums are
not in the basis. Also let T be partitioned into 9 , where U
is an (m - 1) x m matrix which consists of the firstv m -1 rows
of TV and V is an (n - m+ 1) x m matrix which consists of the
remaining rows of T in the sense that U is linearly independent
and any row in V can be expressed uniquely as a linear combination

of the rows in U (P28).

Let D bethe (m-1xmM -m+ 1) matrix such that
vV = VD, (8)

*
and let D be the transpose of D. Also let M be the mxm
matrix which has (m - 1)/ m for every diagonal element and -1/m

for every off-diagonal element. Then by Theorems 5.8 and (P28)
+ ~ ~ ~ *A _ x A
M=TT =UU+V="UU+UDDUS=UC+ 9 )U. (9)
This implies that for any j and j,

x ~
Uj(T+ DD)T; = M, (10)

where Ui is the matrix U with the ith row deleted, flj is the

h

matrix U with the jt colum deleted, and Mij is the matrix M

th

with the i'Ch row and the j colum deleted, i=1, 2, .. ., m;

i=1,2, ..., m
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Since the colums of the m x (m - 1) matrix U are linearly
independent and any row of U can be expressed uniquely as the
negative of the sum of the rest of the rows in U, the rank of the
(m-1) x (m - 1) matrix Ui is m-1, i.e., Ui is nonsingular,
forany i=1,2,...,m Also I + DD* is positive definite
and hence nonsingular. Thus, the ordinary inverse of Ui(I + DD*)

exists and Uj is uniquely determined by

* -1
Uj = [U(I+DD)] My; e (11)

The rest of the elements in T+ can be derived as linear combinations
of the elements in Uj by (P28) and Lemma 5.3. As an example,

consider the following incidence matrix T:

-

1 0 1 -1

Here,
(1 o] 1 -1
U o= -1 1 and D =
o - 1 0

We arbitrarily set i =3 and j =3 for Ui and Uj' Then

i 1l 23 -13]

-1/3 2/3
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. [~ ]
2/3 -1/3 3/15 -3/15

-1/3 2/3 | L_1/15 4/15

By (P28) and lemma 5.3, we produce T' as follows:

3 30

™ = 1/15 4 -3
1 -5

'3 3 0

The following properties of the pscudo inverse of an inci-
dence matrix may be derived from the above analysis.

First, we define the corresponding directed graph of a connected
incidence matrix as a graph whose vertices and arcs have one-to-one

correspondence with rows and columns, respectively, of the incidence

th th

matrix and each arc is directed from the 1 vertex toward the j

vertex if the corresponding colum of the matrix has 1 in the ith

row and -1 in the jth row. The corresponding graph of the in-

cidence matrix in the above example is shown in Fig. 1.
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If x is an n-component column vector which represents
quantities or flows through n arcs in the graph, Tx represents
the amount of the net inflow (or outflow if negative) to be made at

each one of the m vertices. Since by Theorem 5.8,

<4

TT° = I - 1/mE, (12)

where E is the m x m matrix whose elements are all equal to 1,
the elements in the ith colum of T' represent a set of quantities
which flow through the n arcs when one unit of inflow is made at
the ith vertex and 1/m units of outflow is made at each one of the
m vertices.

lHowever, the quantities in the ith colum of 1% have an
additional property. As brought out in the proof of Theorem 5.9,
any colum of T 1is expressible uniquely as the sign-adjusted sum of
colums in a basis, and, by (P28), the corresponding row of ™ is
also expressible uniquely by the same sign-adjusted sum of the
corresponding rows in the basis of T . llence, the flow quantity
in the jth arc is equal to the sign-adjusted sum of the flow
quantities in a sequence of basis arcs (i.e., arcs whose corres-
ponding columns are in the basis) which connect the same two ver-

tices as the jth

arc does. This further implies that the sign-
adjusted sum of the flow quantities in any sequence of arcs which
connect a pair of vertices is jdentical for any given pair of vertices.
This is equivalent to saying that the sign-adjusted sum of the flow
quantities in the arcs in any loop is equal to zero, where a loop

is a sequence of arcs which starts and ends with the same vertex, and

every pair of adjacent arcs in the sequence have a common vertex.
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h th

colum of T+

Thus, the elements in the jt row and the i
are equal to the quantity which flows through the jth arc (in the
direction of the arc) if the flows in the graph are made in such a

way that the following two conditions are satisfied.

Condition 1. One unit of inflow is made at the ith vertex

and 1/m units of outflow are made at each one of the m vertices.

Condition 2.  For every pair of vertices the sign-adjusted
sum of the flow quantities in a sequence of arcs which conmect the two
vertices is identical for any such sequences.

The two conditions uniquely determine the elements in T for
any given directed graph in which the correspondence between rows of
T" and arcs of the graph and the correspondence between colums of

T and vertices of the graph are fixed. To show this, let T be
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partitioned into [U: V] as before, and let D be the matrix such
that V = UD. Suppose that two n x m matrices s and § both

satisfy the above two conditions. Then, by Condition 1,

TS -4 = 0. (13)

u
-~y -
Let the matrix S - S be partitioned into =~ where U is an
v
(m - 1 x m matrix which corresponds to basis arcs and V is an
(n -m+ 1) xm matrix which corresponds to nonbasis arcs. Then,

by Condition 2,
V = D, (14)
*
where D is the transpose of D. llence,
~ 4 - *_ *
T(S-S)=U0+UDDU = U +DD)J = 0 (15)

However, since the colums of U are linearly independent and the
matrix I + DD* is nonsingular, as shown earlier, this implies that
every element in U is zero. Hence, the matrix which satisfies
the two conditions for a given graph is unique.

Fig. 2 is prepared from the first colum of T' in the above
example.

The pseudo inverse of an arbitrary matrix possesses two
types of least square properties, i.e., x = A+y has the minimum
norm, among all x's which minimize ||y - Ax||. In our analysis
of the pseudo inverse of a connected incidence matrix, this means

that
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(i) for any given y, ||y - Tx|| » ||y - TT'y|| for all x, and

(ii) among all x's which satisfy ||y - Tx|| = ||y - TTy]|, x = T'y

®
has the minimum norm where ||x|| = (x x)l/2 .

We shall show that the two conditions above can also be derived
from these two types of least square properties of the pseudo inverses
of connected incidence matrices. First, if (i) holds, Condition 1 nust
hold. For e*Tx = e*TT+y =0 for any x and y, and among all vectors
z =y - Tx whose elements add to the given constant e*y, the vector
whose elements are all equal to (l/m)e*y has the minimum norm, and
by setting y equal to a unit vector Condition 1 follows.

If (ii) holds, Condition 2 must also hold. To show this, let T
be partitioned into [U:UD] as before. Let x be an n-component
colum vector of flow quantities and let it be partitioned into i; ,
where X3 is an (m - 1) -component colum vector of flow
quantities for basis arcs, and X, isan (n - m+ 1) -component
colum vector of flow quantities for nonbasis arcs. Since Condition
1 is satisfied, we must have for any given vy,

*
Tx=Ux1+UDx2=y-EﬁX e. (16)

Since the colums of U are linearly independent, this implies that
+ Dx, = z a7

where z is a given vector such that

*
Uz = y- EﬁX e . (18)



180

Let

* * *
L= X] X+ Xy Xy - A (xl + sz -2), (19)

where A is an (m - 1) -component column vector of Lagrange

multipliers. Since ||x]| is hinimum, we must have
a _ _
" Xy - 2= 0 (20)
aL  _ SRy -
3;; = 2x2 Dx= 0, (21)
hence,
X )
X, = D Xy (22)

thus Condition 2 is satisfied.

The reader is referred to Berge [10] and Charnes and Cooper [20]
for discussions on incidence matrices, graphs and their applications.
See also Charnes, cooper, DeVoe and Learner [21] which is an interesting
application of the pseudo inverse of an incidence matrix. The ex-
plicit form of the pseudo inverse of the distribution or transportation
or dyadic matrix was first developed by A. Charnes, G. G. den Broeder,

Jr., and R. E. Cline in 1956. (See, for example [Cline Ph.D. diss.]).
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5.4, Stochastic Matrices

In this section we give an application of the Scroggs-Odell pseudo
inverse to stochastic matrices where the spectral property inherited by
the Scroggs-Odell pseudo inverse plays a very important role.

Let A be a stochastic matrix, i.e., A 0 and aj = j, where
j=00Q,1, ..., 1)'. A matrix A 1is said to be reducible if and only
if there is a permutation matrix P such that

B 0
PAP

where B and D are square matrices. Otherwise the matrix A is called

irreducible. For any reducible matrix there is a permutation matrix P

such that
* B —_
PAP = A1 0 . e 0 0 e 0
0 A, 0 0 0
0 0 Ay 0 .. 0
Ak+1,1 Ak+1,2 Ak+1,k Ak+1 0
bAhl An2 R Ank An,k+1 v An_

where the Ai’ i=1,2, ..., n are irreducible. We say that A is

completely reducible if and only if there is a permutation matrix P

such that

* .
PAP = diag (Al’ AZ’ e e ey An)
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Theorem 5.10. Let A be a stochastic matrix. The necessary and

sufficient conditions that A" be stochastic are that A be either
completely reducible or irreducible and every non-zero eigenvalue of A

lie on the unit circle.

Proof: We consider the necessity of the conditions. It is well
known that the eigenvalues of a stochastic matrix lie in the closed
unit disc. Consequently, it follows from Chapter 4, Theorem 5 that if
AY s stochastic, then all non-zero eigenvalues of A (and Af) must
lie on the unit circle in the complex plane.

Let A be reducible. Then there exists a permutation matrix P

such that

~ *
A = PAP,
~ *

where A has the form (5.23). Since P is a permutation matrix PP = I.
Thus A and A are similar and, hence, have the same eigenvalues. Due
to the triangular form of A, the eigenvalues of A are precisely those
of all of the Ai’ i=1,2, .. .,n. Suppose that there is an i
greater than k such that not all of the Ail’ 120+ i,i-1

zero. But in this case, the spectral radius of Ai is less than the

A ., A are
spectral radius of A. Thus the eigenvalues of Ai are in modulus
less than 1. This is a contrad’ction. Hence A is completely reducible.

Thus, the proof of the necessity is concluded.

The following lemma will be needed in the proof of the sufficiency.

Lemma 5.4: If A is stochastic, irreducible and has all of its
non-zero eigenvalues on the unit circle, then the elementary divisor of

A corresponding to zero is at most of first degree.
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Proof gg_the Lemma. It follows from a well known redult due to

Frobenius, that the minimum equation for A is of the form xP (xh -1 =

0. Factoring the polynomial in this equation,

xP (xh -1 =(x-1) (xp+h-1 s xPh-2 xP) (D
Thus
(A-1T) WPl pthz Lo 2)
Now a Jordan form for A is
c = 1 0 0 0o 0]
0 wy 0 0 0
0 0 wy 0 0
0 0 0 W g 0
0 0 0 0 N

where W, i=1,2,...,h-1, are the h-th roots of unity
different from 1 and N is a p by p matrix whose elements arc
all zero except for the diagonal above the principal diagonal. The
first p - 1 elements in the diagonal above the principal diagonal

are 1's and the other elements are zero. Then
APl P2 P o p P,y pl

P (diag (h, 0, 0, . . . 0) P (3




184

Thus the i-th row of the sum of the matrices on the left in (3) is
1

hpilpl-l’ where Pl'1 is the first row of P ~. But each matrix

in the sum on the left in (3) is a stochastic matrix. Hence the sum
of the elements in a given row of the sum is h. Now the first column
of P is an eigenvector of A corresponding to 1. Hence we may
take Pip = 1, for i=1, 2, ..

of the first row of P1 is 1. Now if p > 1, consider the sum

«» n. Thus the sum of the elements

APYR-2 o apthe3 L Pl L ppptd (4)

b

where d11 = h, dh+1,h+p = 1 and all other elements of D are zero.

1 1 1

Then the i-th row of PDP + Pi,h+lph+p . The summands

is hpiIP1
on the left in (4) are each stochastic. Thus the sum of each row of

ppp L

must be h., But P; h+l is not zero for at least one value of
i between 1 and n and the row Pﬂ}p is not identically zero.
Thus we have contradicted the fact that the sum of the elements of
Pl'I is 1. Hence p < 1.

Returning to the proof of the sufficiency portion of Theorem 5.10,
suppose that A is completely reducible and all of the non-zero
eigenvalues of A 1lie on the unit circle. Then there is a permutation
matrix P such that PAP* = diag (Al’ AZ’ o ey Ag). Since each
of the Ai is irreducible and the nonzero eigenvalues of each of the
Ai lie on the unit circle, the non-zero eigen values of Ai are

precisely the h,-th roots of unity. Thus it follows that the minimum

polynomial for A is of the form xp(Xk - 1), where i = 1l.c.m.
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(h1 hz, . . ey hg). From the lemma, either p=0 or p=1. If

p =0, then A is non-singular and A" = A=Al g p=1,

then A is singular and A" Ak'l., In either case, A" s

stochastic.
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5.5. A Generalization of the Gauss-Markov Theorem

Consider the linear model
y = Hx + e

where y is a real p by 1 vector of observations, x 1is a real
unknown n by 1 state vector, e is a real p by 1 random error
vector, and H is a p by n known real matrix. Also E(E) = ¢ and
E(eeT5 =V where E denotes the expected value operation, ¢ denotes
the null matrix (or vector), and V is a known real symmetric positive
definite matrix.

We seek a linear, minimum variance, unbiased estimate x of x.
That is, we are to find a matrix B such that ; = By, E(;) = x, and
V= E[(; - X) (; - x)T] is minimum in the sense that if z is any
linear unbiased estimate of x, then qT[Vi -Vl q>0 forany pbyl
vector q # 0. Vi is the corresponding covariance matrix of z,
which is a real symmetric positive definite matrix. These conditions
imply that E(;) = BHx = x so that BH =1, where I is the nxn
identity.

If the rank of H 1is p < n, we cannot require that E(;) = X,
since, in this case H has no left inverse. We can, however, modify
this requirement by requiring that the norm IIE(;) - x|| be minimum.
The properties remain unchanged for complex matrices if we replace
transpose by conjugate transpose.

To facilitate reading, we list some properties of the Penrose

pseudoinverse used in obtaining this result.




P1)

P2)

P3)

P4)

P5)

P6)

We are now ready to establish a generalization of the Gauss-Markov theorem.
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For every matrix A there exists a unique matrix A" such
that AA'A = A

+

AT = A

T

[
>
>

aahHT = b,

[}

We call A" the Penrose pseudo-inverse of A.

+ + + +
(AQ) = Cl A1 where AC = A1C1, C1 = A AC, and A1 =
+
AC,C
1~1
+. T T.+
A) = (A)

All solutions of the matrix equation AXB = C are given by
x=A"CB* + Y- A"Ay BB" if and only if m*@G'B = C

where Y has the dimension of X.

Range of AT equals the range of Af, that is
R(AT) = R(A+). A'A and ' are, respectively, the

projection operators on the range spaces of A" and A.

For any n x n matrix A and vector, z, z = 2y * 2,

zlsR(Af), zzeN(A), and Xy is orthogonal to Z,.

Theorem 5.11: Consider the linear model described by the vector

equation

y = H X + e
px1 pxm mx1 pxl
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where E(e) = ¢ and E(eeT) =V 1is positive definite. The minimum

mean-square-error linear estimate x of x is given by:

x = MH vi y
with

. o= M
where

M = Wyvly.,

Proof: We require that ;c = By and E(;c) = X whenever xeR(HT) .
These requirements imply that E(;c) = BHx and (P5) implies that
for x in R(HT) R

+

HHx = BHx = x.
Let x = x, + x, where X eR(HT), x,eN(H). Then
1 2 1 2
IEG) - xI| = [|Bix, + Bix, - x|| = [[Bix, - x,|| = |Ixy]]

It follows that ||E(;<) - x|| is minimm for xéR(HT) . The covariance
matrix VS( of the estimate X is given by VS( = BVBT and must be
minimized subject to the constraint Gi = H'H. To do this we adjoin
the constraint BH = H'H to BVBT using a matrix Lagrange multiplier

A and find conditions necessary to minimize

Q = BvBY + AT [H'H - HTBT] + (H'H - BH) A.

Employing the variational technique [38] we obtain the first variation 6Q,

6Q = &B [VB' - HA] + [BV - AT H'] BT,
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Since 6B 1is arbitrary, we find that setting 6Q = ¢ implies

T,T

BV - AH = ¢
O‘I’
B = agly?

Multiplying the latter by H we obtain

H'H = AHWV lH
so that using (P3) and setting HVIH = M we have
A= R o+ oy 1 -mf] o= M ey (1 -
where y 1is arbitrary to within having the dimension of AT.
Assume that the rank of H is q < min (n, p). Then
B = apvt

o +y [1-m]y HvL

We need to establish a workable form for M. To do this apply (P1)

with A=HWV?! and C=H. We get

c, = @vhHuvly
A = HVE vt @lvht e (etvh® el
= v (Y wlvlng®
Hence
M= (v ht et vl c@vht elviimty?
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Therefore
ot 4 To-1
B = M +y[I-m]rHV
= MEV L+ y 1 - v (@vh? elviig?
Hv e (@ h* alviin®yt wlvl,
To establish the second term is ¢, i.e. [I - MM+] HTV_1 = ¢

We need MM HV! = H'V'l. Since [I - M) is an orthogonal pro-

jection on the null space of M+, we need to show that N(M+) = N(H).

Since M= HTV'1H, then it certainly follows that n(M) = N(MT) .

Also note that N(M) = N(H). Thus suppose there exists an xeN(M)

1 -1

such that x¢gN(H). Since V°

is positive definite, V does

not rotate Hx into the null space of H'. Hence HWV!

Hx # 0
which implies xgN(M). This is a contradiction. Thus N(M) = N(H).
Now N(M) = N(M) = N(M') which implies N(M) = N(H) and

consequently (I - 1) iyl = ¢ since R(HT) = N(H)"'. Hence

x = By = MHVY

with covariance matrix

V. = vl = MV InM'T
= Mm'T = M.

There are two special cases where the formulas for x and V, reduce

very nicely.
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Case 1: Rank H =n < p. In this case HH = I. Thus

>

x = MHVY
T,
= @viptalvly |
and
v, = e im ! gy luwlyv-lgy L

mv il

Case 2: Rank H =p <n. In this case HH' =1 and substituting into

the four defining equations establishes that

avh* - wt

Thus

+ T..-1 ..+

M =[VHT + T-1, 4.+

vt vl (HTHYV Iy

1HH+) +

= H HWV
- v vy’

+ T+

H VH

Hence

>
—J

x = Muvly

HY IRV Ly
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and

It is of interest to compare the least squares estimate of the
state vector to that of the minimum variance estimate of the state
vector. Magness and McGuire [63] have been able to give an extensive
anlaysis in comparing these two estimates whenever the regression
matrix of the linear model is of full-rank (colums linearly inde-

pendent). They were able to establish the inequality

1 1
v (Amax+ Amin) (Amax + anin

<
IS—

) Vv

B L

where VLS and VMV are the covariance matricgs of the least squares
estimate and minimum variance estimate, respectively. Anax and Anin
are the maximum and minimum eigenvalues of the correlation matrix o
of the error vector. The above inequality places an upper bound on how
much is lost by use of the least squares estimate of the state vector
to that of the minimum variance estimate of the state vector.

In the following theorem it will be shown that the least-squares
estimate of the state vector will have the same covariance matrix as
that of the mean-square-error estimate of the state vector, whenever

the regression matrix of the linear model has all of its rows linearly

independent.

Theorem 5.12: Consider the linear model described by the vector

equation

px1l pxn nx1 px1
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where E(e) = ¢, E(ee]) = V is positive definite, and R(H) = p.
Then the covariance matrix of the least-squares estimate of the state
vector equals the covariance matrix of the mean-square-error estimate

of the state vector.

Proof: The least squares estimate of the state vector is

~

T
XL

H* H Y

H'Y.

The corresponding covariance matrix is

_ + T+
VLS = HVH .

The mean-square-error estimate of the state vector is by Theorem 5.11,

Case 2,

The corresponding covariance matrix is

v = uw’t.

Thus it can be seen there is no loss in using the least squares estimate

whenever the rows of the regression matrix are linearly independent.
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5.6 An Application of a Pseudoinverse to Testing Hypothesis

Consider the matrix A which is nxp. Let A beapxn

matrix satisfying the following equations:

AMA = A
AAA = A
)T = o

A" will be called a pseudo inverse of A. The above equations imply
that the null space of A is the orthogonal complement of the range

of A, and AA" is an orthogonal projection operator on the range of A.
We will use a matrix with the above properties to establish a general
method for testing a hypothesis about a linear model.

We shall consider the linear model
y = Hx+V

where y is a real n x 1 vector of observations, x 1is a real un-
known r x 1 state vector, V is a real n x 1 random error vector,
and H is an n x r known real matrix. In addition V is distributed
N(0, o’I).

Let Q be the p-dimensional vector space spanned by the colums
of H. Assume VeQ2, and that w is a q-dimensional subspace of @
spanned by the colums of H,.

We wish to test the following hypothesis:

HO: E(y) e w ; i.e., Hla =
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We define the likelihood-ratio statistic X to be:

A= mgx p(y) / max p(y), where p(y) is

w

the probability density function of y. The likelihood-ratio test
consists in rejecting H, if x> Ays where Ay was chosen such that

the Pr(x > ).2) < a. Since y is distributed N(Hx, 021) it has been

shown that
. -n/2 1
max P(y) = @]y -l )™ e - 5=
- -n/2 1
max P(y) = (nl|y-n )V oe-L
w
where
:1 = H;c and ;c satisfies HTH;c = HTy ()
% = Hoa and o satisfies H, Ha = H,© (2)
1 171 1Y
But, since HHE® = H' and NA) = R(A)'L it follows that equations
(1) and (2) have a solution given by
x = Hy
a = H g
Hence, A can be written as
n/2

2
|ly - Hyall :

MRY
[ly - Hx||
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We now define the statistic F to be

F(y = “—:g O oo 1.

o

Since F()) is a single-valued everywhere increasing function of ),
the A-test is equivalent to rejecting Hy if and only if F > FD‘O) s
where F(AO) is chosen such that 'Pr{F > F("O)} < a. We will now

show that F is the central F if and only if HO is true. Now

‘ ~ 02
F - n-p l|Y'HlQ|l _
- ~ 2
P4 " )y - x|
or
A2 ~ 0,2
Cnp Iy HE! -y -
F = [ ]
P-q

212
[y - Hx]]

We will rewrite F  using the fact that X = Hy, o= H'ly, (HH-)T = HH~

which gives

¥ - Ha)' (- Ho.

~112
H)’-Hlall

We have

~ 2 - 8T -
[ly - Hyal] (v - HjH; ¥)© (v - HjH; y)

T T.,-T,, T T, - T,-T., T, .,
=YyYy-y 1H1Y'YH1H1)'+)'H1H1H1H1Y

T T, -
= YY'YHIHIY

T -
y [T - HyH]]y.
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Likewise
~ 2 T -
|ly - Bx}|® = y [T -H ly.
Therefore
~ 2 ~ 2 T - -
Iy - Hyel|™ - [y - Hx||® = y° [HH. - HH; Jy,
so that

T .- -
Y[HH -H].l]y

yl[I - H )y

We will now show that HH - HlH- and I - HI® are symmetric and

idempotent. To do this we use the facts that (HH')T = HH and

HHHH = HH .

@ - HEDT = W - HpH

(I -w)T = 1-mHW

1H -

¥

HH - H,H,HH - HH H,H, + H

(HH - HH) (HH - HyH)) 1t 1

We now show that HH HlHl = H1H1 HH = HlHl . To do this let

Z = Zl+Zz+Z:,> where

Zleﬂ;

Zzew

Zsem"' with respect to S

(Hlﬁl'HH‘) 7 = Hlﬂl‘ (Z, +23) = I,
(HH'HIHI‘) 7 = H'z2 = I,
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Now
GG 2, = I
Thus
HH HlH1 + HlHl HH = 2H1H1 .
Hence
(HH - HlHl) (HH - HlHl) = HH - HlHl
Also
[I-H][I-H] =1-H -H +HHBH = I-H ,
and

[ - HyH, "] [T - HHT) = HHO - HyH)”© - HHO + HyH) HH = 0.

Hence, we have that yT[I - H ]y and yT (HH - H1H1']y are independently

distributed as Xz(n - D, 61) and X2 (p - q, 82), respectively, where

o
[}

EGT [I - B Ey)] = xH [T - HH] Hx

XX [HH - H (HH) )x

xF [HH - HH]x = 0,

and

O
[}

, = EpT - BT EG)

Hence
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y I - HH Ty
n-p
z T .
POyl [1-my

is distributed as F(p - q, n - p, 52).

Now if HO is true, E(y) = Hla = n so that
6, = nl [HH - HH, ]
2 n 11"

Since new, HH n = n and HlHl'n = n, therefore

6, = nT[n n} = 0. Suppose §, = 0. Let E(y) = Z, where
Z= zy + Zy, Lyew, Zyew . This implies that
2, + 2, (7 -HHET (2 +2) = 0
Tz, @+, -2) = 0
@ +2,012, =0
2,72, + 2,12, = 0.
But ZlTZ2 = 0, since Z1 is in the orthogonal complement of Zy.
Hence, ZZTZ2 = 0, so that Z2 = 0. We conclude that if

8, = 0, E(y)ew. We have thus established that HO is true if and
only if §, = 0. Hence F» is the central F if and only if H,
is true.

It should be noted that the aboye test could be done with the
Penrose pseudoinverse. The more general pseudo inverse A  was given
to indicate the possibility of defining a pseudo inverse and adapting

it to a particular situation.
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5.7 Application To Estimable Functions

Consider the linear model Y - HX + V where Y 1is an n by 1
real vector of observations, H is an n by p known real matrix -
of rank q <min (n, p), X isa p by 1l state vector, and V is a
real n by 1 error vector. Also let E(V) = ¢ and E(VVT) = QZI.
Suppose it is desired to estimate the state vector by the method of

least-squares. Thus it becomes necessary to minimize VTV = (Y - HX)T

(Y - HX), which gives the nommal equations (HTH)X = HTY. A simple
argument can be used to show that this system is consistent and thus
the general solution is X=H Y+ (I - H+H)Z where Z is arbitrary.
This general solution implies that there are infinitely many solutions.
To the statistician this is undesirable for two researchers with the
same data, both using the same method of estimation, can draw different
conclusions. Also it can be seen from observing the general solution
that no unbiased estimate of X exists unless H is of rank p which
is also undesirable.

It would seem natural to investigate whether there exists an

unbiased estimate of any linear combinations of the elements of X.

Before proceeding further we shall formulate two useful definitions.

Definition 5.1: A parameter is said to be estimable if there exists

an unbiased estimate of the parameter.

Definition 5.2: A parameter is said to be linearly estimable if there

exists a linear combination of the observations whose expected value

is equal to the parameter.
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Let A be a matrix such that A(I - H+H) = ¢, then
H+HAT = AT. Hence, the colums of AT belong to R(H+) and thus
AX = AH'Y + A(I - H'H)Z = AH'Y which implies E(AX) = E(AH'Y) = AH'HX = AX.
Hence, for any A such that A(I - H+H) = ¢, the parameter AX 1is an

estimable function.

Theorem 5.13: Let H be nbyp of rank q < min (n, p), then

AX is estimable if and only if there exists a solution for r in the

equations
T _ T
where
_ T T T.T
A = (al’aZ’°° o,an).

Proof: Partition A such that each a; is a 1 by p row vector.
Suppose AX 1is estimable, then there exists a B such that E(BY) = AX

which implies BHX = AX for every X. Hence it follows BH = A which

T,T _ T

implies H'B" = A". Thus the colums of AT belong to the column

space of HT and consequently H+HaiT = aiTo The estimate of aiX

. + . . N
is aiH Y. It is unbiased since

+ +
E(giH Y) = aiHHX = aiXo

T

Now a.” e RH"), but RH") = R(HT),-hence, there exists a vector z

such that
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'Hence, the rank of the matrix H is equal to the rank of the
augmented matrix [HT|aiT]. Thus the rank of HH equals the rank of

[HTHIaiT] which implies H'Hr = aiT has a solution. Conversely, if

T

H'Hr = aiT has a solution, we let b = Hr. Then

EGTY) = EGTHY) = r'HHX = a,X = E(a;H'Y).

Hence, a, is a row of A if and only if there exist a solution for r

T

in the equations HTHr =a;, i=1,2, .. ., N,

Theorem 5.14: Let H be nby p of rank q < min (n, p), then

the best linear unbiased estimate for any estimable function AX is a'y.

Proof: Assume that the best linear unbiased estimate of AX 1is

CY = (AH+ + B)Y. Now CY is completely general since B is general.

We must determine the matrix B such that

AH'HX + BHX

[}
n

E(CY) = E [(A" + B)Y]

AX + BHX = AX.

Hence BH = ¢. To show that B = ¢ we must minimize the variance of CY .

Cov(CY)= E[(CY - AX) (CY - AX)T]

Efory’ct = axy'c! - orx’al + axxPAT)

c(o?1 + i(HY cF - AxXTHICT - anodaT + axxTaT

' + B) (0% + BXHD) (a* + B)T - axxTHT (aH* + B)T

- 't + B) HXXIAT + AXTAT
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o? (A" + B) it + B)T

+ +T.T

o an* HTAT + u*T

T

+ AH'BT + BBY).

T,T

Now BH = ¢ implies that H'B = ¢ so that the colums of BT are in the

null space of HT which is the same as the null space of H'. Hence it

T=

follows that H'B ¢. Thus

Cov (cY) = AH'H'TAT + BB,

Hence to minimize var (CY) we must minimize the diagonal elements of BBT.

But, they are all non-negative, hence to minimize the Var(CY), we must
take B=¢. Thus C = A" and AH'Y. is the best linear unbiased

estimate of AX.

Definition 5.3: The estimable functions aix, i=1, 2; .« « o, kK are

said to be linearly independent estimable functions if the a; are

linearly independent.

Theorem 5.15: Let H be an n by p matrix of rank q < min (n, p),

then there are exactly q linearly independent estimable functions.

Proof: a,X is estimable if and only if a;' ¢ RH'), which

implies that ai[I - H+H] = 0. Also, by Theorem 3.1, aiX is estimable
T, T

if and only if there exist a solution for r in the equation H'Hr = a,".
T _ . T T . T

Let T, Ty o ooy by be such that H Hr, =a;,”, . . ., HHr, = a.".

Then

T, T T T
H'H (rl, Ty o o s rt) = (a1 > 837 o 0 e, B ).
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But HTH is of rank q which implies that (alT, aZT, o e ey atT) is

T € R(HT) so that each aiX is

at most of rank q. But each a;
estimable. But the rank of H' is q which implies there are q
linearly independent aiT's,, Hence, there are exactly q linearly

independent estimable functions.

Theorem 5.16: Let H be an n by p matrix of rank q < min

(n, p). Let AX be an estimable function where A is k by p of
rank q. If BX is an estimable function, then the rows of B are

linear bombination of the rows of A.

Proof: This follows immediately from Theorem 5.15.

It is interesting to note that since the rows of_ H are
elements of R(HT) which implies the rows of H are elements of R(HT) ,
that HX is an estimable function. Also since BH is contained in the
row space of H, fhen BHX is an estimable function. In fact
A1A2 .« o o AnHX js an estimable function. Furthermore, it is obvious
that the best linear unbiased estimate of a linear combination of
estimable functions is given by the same linear combination of the best

linear unbiased estimates of the estimable functions.

Variance and Covariance 9_f_ Estimable Functions

Theorem 5.17: If A1X and AZX are two estimable functions,

the respective covariances of the best linear unbiased estimates are

A1H+H+TA1T 2A H H AZT The covariance of the estimates of

Al)( and AZX is equal 62 A H+H+TA2T
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Proof: From the proof of Theorem 5.14 we see that the covariance

of the estimate of A1X is 02A1H+H+TA1T° Similarly the covariance
2, ottt T, T

of the estimate of AZX is ¢ AZH H A2 . The covariance of the

estimatés of A)X and AX is given by:

Cov [A1H+Y, A2H+Y]

E [(AH'Y - AX) (AH'Y - AZX)T]

= B AHWHETAT - Axy'xTa, - A AT+ A xxTA, ]

= AH (P14 H)O(THT)H*TAZT - AT TAT - A HHOTA,T -
ARKA, | |

= GAaHTAT + A XA, - AxTa,T - A ada,T At

= ozAlg*H*TAZT o

Theorem 5.18: Let Y =HX+ V, where H is an n by p matrix

of rank q < min (n, p) and V is distributed N (0, o°I), then the

quantity
m-q o= (Y -HOT (¥ - HX)

is distributed as a chi-square variate with n - q degrees of freedom.

In symbols,

X2 (n-q, x= 0).
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Proof:

o -l (v -H) = (¥ - YT v - W'Y
= Y a-mwH g-mHy = Y a - mHy.
But (I - HH+) is idempotent and hence YT (1 - HH+)Y is distributed
¥ @-aq A=3XH 1-H)IH) = ¥ (-q, 2=0).

This section indicates that in the theorylof estimation the
generalizéd inverse seems particularly applicable. It appears that
considerable simplification if not amplification of the theory can be
made using this tool. Also, it should be noted that separate analysis
is not needed to study the full-rank or less-than full-rank regression
model. In the case of the full-rank model all functions of the state
vector are estimable while the class of estimable functions is restricted
in the less than full-rank case. It is also of interest to observe that
it is always possible to reparameterize the linear model Y = HX + V
such that the new regression matrix is of full-rank. To be specific,
suppose the linear model is less than full-rank. Determine a maximal
set of linearly independent columns of the regression matrix H.

Suppose the maximal set contains k colum vectors. Then use these

k colum vectors to be the first k colums in the new regression

matrix. Also, the elements of the state vector X should be re-

arranged according to the rearrangement in the regression matrix H. Hence
one can now write Y = Hlei + V where Hl consist of the k linearly
independent colums, H2 the remaining colums of H, and i the
rearranged elements of X. If one lets T = Hzi, then T becomes an

estimable function.

1 - .
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5.8. Sequential Least Squares Parameter Estimation

In this section a sequential algorithm for least squares
éstimatioﬁ'of a parémeter state vector is develéped utilizing the
properties of the Penrose pseudo inverse. This algorithm allows the
estimation to begin after the first observation has been made and requires
no apriori knowledge of the initial state of the system. The problems
of weighted least squares, deleting a bad observation, and application
to a dynamical system are also considered. The problems associated
with singular matrices encountered in iterative least squares procedures
do not affect the algorithm.

Nonlinear parameter estimation problems are usually handled by
linear approximations of the actual parameter state in a neighborhood
of a nominal parameter state. The resulting equations are of the same
general form Ax = b; however, in this case x denotes the deviation
from the nominal state, and b denotes the deviation in "observed"
and “'computed' values.

The problem then is to find the solution for x in the matrix
equation Ax = b, where A is an nby m matrix, x isan mby 1l
parameter state vector, and b is an n by 1 observation vector. Since
this equation, in general, does not have a solution the normal form is
considered A'Ax = Afbo It may be shown that this equation always has
a solution, in fact has infinitely many solutions when the matrix A*A

is singular.
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A sequential method for computing the least squares estimate
after n + 1 observations have been made without having to begin
again from the beginning is especially desirable in real time operation.

th

This method allows one to move from the n to the (n+ 1) st para-

meter state with a minimum of computations.

The problem of the matrix ATA becoming singular does not
affect this algorithm because the solution for x which
has minimum Euclidean norm is chosen and the estimation procedure
continues on. At the time the matrix ATA becomes nonsingular this
method gives the same solution as the conventional method. One of the
best applications of this method is to the problem of orbit determina-
tion. In this case one operates in the mode of the deviation space
but basically the problem is the same.

There are in existence two well known procedures for attacking
this problem. One method, by P. A. Gainer (43) requires that enough
observations be made for the system to be fully determined before
the procedure begins, another, by R. E. Kalman (56, 57) which requires
apriori knowledge of the covariance of the estimate. The method which
will be outlined does not require the system to be fully determined
before the estimation begins nor does it require any apriori knowledge
of the initial state of the system. It will be easily seen that this
method becomes the same as Kalman's after the system becomes fully
determined.

This section is divided into five major divisions. The first

division exhibits the sequential algorithm. The second examines the
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problem of weighting. The third exhibits the covariance matrix. The
fourth presents a method for deleting a bad observation. The fifth

demonstrates the application of the sequential algorithm to a

dynamical system.
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The Sequential Algorithm

Utilizing the properties of the Penrose pseudo inverse, an
algorithm is developed which allows one to move sequentially from

th

the n to the (n + 1)St parameter state with a minimum of

operations. This algorithm is not restricted to scalar observa-

tions but also allows vector valued observations.

Theorem 5.19: The pseudo inverse of any matrix,

A= (V) 1)

where U and V are arbitrary partitions of the matrix A in

columns, can be written in the following form:

vt - utvet - utv a - cto ittt a - veYy
A" = )
¢t o+ a-corutTy a-veh
where c = (I- UU*)V
and
K = (I-(-covivTu'yva-cio’l

The proof to this theorem is given in chapter 3 and is stated here

for easy reference.

Corollary 5.1: The pseudo inverse of any matrix,
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where R and S are arbitrary partitions of the matrix A. In

i'ows, can be written in the following form:

AV = ® - aRt D
where
J = B + - ErRRTSk 1 - Y,
K = (1+ (1 -eHYsRRTsT (1 - hH )t
and
E = S (I-RR)
Proof: Taking the transpose of equations (1) and (2):
T
R 3)
s
AT . @7 - T - - TVOUTewT - TethvietT
ictT e - OTewT - e ) 4)
with
I = v a-u'Th
and
Kl = 1+ (1 - ¢ HvutTutv @ - ¢ty )L

Noting that equation (3) is of the desired form, let

A=Al R=UT, 5=V, k=K, E=cl

and using the fact that (A+)+ = A, gives the desired result.
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A= R - 'R - a1 - E'rR'RTsTk (1 - EEY) sk
P B e @ - E'9rR TSk (1 - BED)
with |
E = S(I-RR
and
K = 1+ (-©eYse'r'TsT - )t

Simplifying, let

J = E'+ (1 - E9rR' RSk (1 - EEY

which gives,

A" = ® -k
It should be noted that K, the inverse of a positive definite matrix,
exists for every R and S.

In least squares parameter estimation one encounters the pro-
blem of finding the minimum norm solution for x of the matrix

equation.
Ax =b +e

where A is a n xm matrix, ¢ 1is a mx 1 parameter state vector,
b is an observation vector, and e is an error vector. The least

squares solution of minimal Euclidean norm is given by

x = A"
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Theorem 5.20: Let A be any n x k matrix, A,.1 be

the matrix consisting of the first n-1 submatrices, and An the

nth submatrix, that is

Ar-1
Ay

Proof: It is noted that A is in the form specified in

Corollary 5.1. This implies that:

+

+
A = (An-l * Jn‘t\l%-l . Jn)
where
_ + + + +T T _ +
Jp = E ¢+ I - EnAn)l\l-l An-1 Anfn (1 EnEn)

~
[}

n T - EEDAAL ALA (- BED )

and

By = A (- ALALY)

Using the results of the above theorem the least squares solution of
AX = b+e

may be realized as a sequential process. Noting that the least squares

solution after n observations have been made is given by
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and writing A and b in partitioned form

_ + ) +
X, (‘\'1-1 Jn/\lAn-l : Jn) bn-1

where bn-l is the first n - 1 observation vectors and bn is

the nlCh observation vector. Multiplying gives
= A -3 Jb_
% = A1 Ppa A1 Dpop *
. - + .
and noting that x__, = A,.q b,.q vields
X = Xpop tIn (O - AX, )

It should be noted that no apriori knowledge is necessary to begin

the estimation procedure. One need note only that

~ +
X = Albl

to start the procedure. In order to carry out this procedure it is

only necessary to compute sequentially the two matrices A;; An and

A A+T Of these two matrices A;A;T will later be shown to be the

. +
covariance matrix. To compute AAL»

+ + +

AA T A - TAAL ) Ar-1

then

+
AnAn=An1n1 n“\n(I nl nl)
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+ . +T
and to compute A.n Ah
+,+T _ + +T - + : +T_+T T .T
Ay T MM TPl - Jn) Ah-1 -1 % I
T
Jh
or
+ . +T _ + +T _ + T .T T _ L+ +T
AnAn =AM %-lAn-l% In Jn}\‘n“\n-l"\n-l

T

+ +T .T +
* JhAhAn-lAn—lAan * Jan

Weighted Observations

By weighted least squares it is meant to minimize (Ax - b)TR'1
(Ax - b), where R 1is a diagonal positive definite matrix and hence

-1

there exists a matrix Q such that QTQ = R In order to do this

it is only necessary to consider a matrix equation of the. form
QAx = Qb + Qe instead of the equation Ax = b + e. This indicates

that the least squares solution for x is given by,
~ +
x = (QA) Qb (6)

Theorem 5.21: A method for computing sequentially the least

squares estimate for x in the matrix equation QAx = Qb + Qe

; when the observations are scalars is given by:

~ -~

X = %t Ph (bn B anxn-l)




216

where
+ + . +
@, T -A ;A D) i a f oaA A,
_ + + T.-1 .+ +T T . _ +
Ph = |0y * 4fn-18n-1 &) A-18n-1 2 if a, = %An-180-1
Proof: Consider the matrix equation partitioned in the follow-
ing way:
-1 | {A-1 I'Qn-l bn-1 1] {%n-1
. . . L] L] L] x ol ! . . . L * L d + L] L .
I 1%n 19 _bn ] % | ®n |
where Qu-1> A,.p» and b _; are the first n-1 rows
th

of the respective matrices with Ay 3, and b n the n TOWS .
A simple consequence of Theorem 5.20 indicates that when the
observations are scalar valued the sequential least squares solution
is given by

2y

n T %1 Y oSy (bn T4 xn-l)

>

with

(qnan (I - (Qn-lAn-l)+ (Qn-lAn-l) ) )+
if .
9% # h®n (Qn-l “\1-1) Qn-l‘A‘n-l




ST O * 0 Qi ) Q) o )T @)

+T TT
(Qn-lAn-l) a9,

i‘f
+
9% © BbPH (Qn-lAn-l) Qn-l‘L\n-l

To begin the estimation procedure

S

+
X, = (qlal) qlbl

but since Q is a row of the Q matrix composed of only one element
which is not zero this is equivalent to multiplying by a scalar.

Thus (qlal)+ = anl'l implies that
X = 3 b1 (7N
. . . + +
Since Qn-l is nonsingular (Qn-lAn-l) Qn-lAn-l = An-l An-l

which reduces the consideration to examining whether

+ +
n an‘\l-l An-l or a4 # an‘l\l-l An-l

2
n

+
If 4 ? an“\n-l"t\\-l
then
- I-A A ¥
Sp = (apay (T - Ay g Aygp) ) ,  but by the same argument

as used to obtain equation (7)

Sh (a, (I - A;-l A1) 3 -
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which implies that

~ -~ + -

S I C A An-lAn-l) ) qn qn (b - aX, 1)
and let

+ +

P, = (an (I - An-1 An-l) )
then

xn = X1 * P (b Xh- 1)
If

+ « .
a, = aA 1A and defining
_ + +T

G- = Qg A Qg Ayp)

then
= TT -1

5Sp < 1+ qnancn-l anqn) n 1 nq
and letting

-1 _ T

rn - qnqn b]
then

- T, -1 -1
s, = (rn + ancn—lan) Cn_lanqn
. . ~ ~ -1

which gives X, =X, * (rn + an n-1 n)C 1a]q a, (b - xn 1)
and let ’

P = (r, +a ) aT

n n n n 1% n
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then

-~

X, T X1t Py (bn T e xn-])

~

The calculation of C N is done in the following way:

_ + + : +T  ,+T _T.T_T
Cn - (‘t\l-l annanAn-l : sn) An-l Ah-l aQs

T
*n

= - T T _ TT.T
Cn Cn-l annancn-l * sn (ancn-lan + l'n) sn Cn-l anq'nsn
If
# aA A
an an‘%-l n-1
= _ T _ TT
Cn - Cn-l pnancn-l * Pn (ancn-lan * rn) Pn Cn-l anpn
and if

+
a4 = 3 ‘\'1-1 An-l
n n-1 ~ Pp?h Gh-1

Theorem 5.22: A general expression for sequential estimation

of a parameter state vector using weighted vector valued observations

is:
_ + _ ot T.T _ +
xn - xn-l B EnQnA nxn-l (I EnQn‘%) Cn-lAnQnKn (1 EnEn) QnAnxn-l
E'Qb_ + (I - EXQA) C._.AQK (1I-EE) Qb
nnn nnAn n-l%nn nn nn
where

+

E, = QA (I- A:x-l An-l)+
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Kh = @+ - EnE;)QnAnCn-lA;Q: (I - EnE:l))-l

and

T
Cp1 = Qi)D" QA D"

The proof is a direct application of Theorem 5.20 and expansion as in

Theorem 5.21.

A more interesting consequence of this theorem is when it is
assumed that A, = AnA:l—lAn-l or A # AnA;-l‘A‘n-l . By this
it is meant that each of the rows of the matrix A is linearly
independent until the system becomes fully determined. In this case,
An 4 AnA;_lA -1 and after the system becomes fully determined
A = An“gl-lAn-l . Under this assumption EnE:x = I or
EE = ¢ The fact that EF =1 if A # AN A
is shown to be true by noticing that EnE; is an orthogonal pro-
jection operator on R(En) and since ,An # A " +—1An-1 it is implied
that the range space of E is all Euclidean space and the identity

. . + +
on Euclidean space is I. If Ay T AALA then E = E =4¢,
. . . Lo +
which implies that I:nEn = ¢, If A - # A nA n—lAn—l , then
X = 3 + E b - AX
h T *-1 nln ( n nxn-l)
+ + +
but EQ = QA (- A-thh-?) )

and since the rows of A (T - A;-l“\')- 1) are linearly independent
then QnAn (1 - A;_ll-\n_l) is equivalent to multiplying each row by a

set of constants and thus
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+

BQy = (A (I-A A D)

If you let
_ _at +
pn N (An (I An-lAn-l) )
then
X, = Xt P (bn - AXp 1)
+
If Ay = A
then
x = x _.-C .AlQfKQ T o b
n n-1 nlnnnn n1 n-lAnnnnn
with
_ T.T,-1
Kn = @+ QnAnCn-lAnQn)
and
_ + +T
Ch-1 = Qi) Quoifgey)

Noting that
_T-1
Kn - Qn (&1 * AnCn 1 n)

which leads to

A

- T.T-1 T, -
X = Xp-1 * Cn-l“\nQn (&1 * Ancn-lAn) Q Q (b ‘\1
and letting

T T,-1
n cn-lAl'l (Rn ¥ AnCn-lAn)

v}
[}

then

~ ~

n Xp-1 * P (bn B }\1;(11 1)

”
[}




222

Calculating C,_, 1is done as before. If A # %A;-l‘%-l

T T
n n-1 " PnfCn-1 * Pn(AG1An * RIP -

. +
and if A = AAL -1 A then
Ch = Cn-l - PAGha

Summarizing the results of this derivation:

a

X, = Xy P by - A X )

Ay T - A A ) if
Pn =
T T.-1 .
Cn-lAn (Rn * 1\1 Cn-l‘\)) if
C . -PAC . +P (AC AL+ R)PL
n-1 n nn-1 n'n n—l‘% Rn n
T, T .
- cn-lAnPn if
C =
n
T,T ‘ .
Cn—l - PnAnPn if

The Covariance _(ﬁ the Estimate

Consider the vector equation Qb = QAx

Cn- l‘l\mp

T,T
n

Ay FAALIA
Ay = AN 1AL

Ay F AN A

A= AALAL

+ Qe with A, b, Q, x,

and e defined as before where it is assumed that E(Qe) = ¢ and
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that E(QeeTQT) = I where E 1is the expected value operator.
Define C(;cn, ;cn) to be the covariance matrix of the estimate,
then

Clx,, x) = E&x, -0k, - 0.

As before the minimum norm solution to the matrix equation

Qb

Y

*n

QAx + Qe which is x = (QA)+(Qb - Qr), 1is given by
(QA)*Qb, which leads to:

EC(@Q)* @ - (@ @ - 0D

C(xn , xn)

E((@* ) (@) b

E(@Q)"* qee’Q @'

= (QA)*E(Qee’qy (m)*!
- W = ('w?

R 1p*

C(xn, xn)

Deleting an Observation

th observation has been made and it is then

Suppose the n
determined that the observation is bad. It would be desirable to
be able to back up and delete this bad observation and then continue
on in the estimation procedure without having to begin again from

the beginning.
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Theorem 5.23: Consider an arbitrary matrix A = (U, V),

G
and assume A+ is known. Partition A+ as A+ =y where

G and H have the same dimension as UT and VT, respectively.

Then an expression for U" intermms of G and H and related

matrices is:

G(I + V(I - W'H) (T - M'M) (9)

(o
it

with M H- (I -HXI - H)'H

The proof of this theorem is given in chapter 3 and stated again
here for easy reference.

R

Corollary 5.2: Consider an arbitrary matrix A

] S
and assume A’ is known. Partition A" = (F . W) where

F and W have the same dimension as RT and WT, respectively.
Then

+

RN = (1-8") (1+WI-sW's)F (10)
with B = W-WI-W 1-sw

Proof: Taking the transpose of equation (9)

vl = a-vMha +uf a - wm*Tvhel
and

o™ = - My +d @ - VIED VDT
with

ML = BT - HT - VIEDY a1 - v



2Z5

By letting R = U, S=Vvl, F=gl,B=M, and W=H' gives
R = (I-BB)+WI-sw SF

and

B = W-WI-sW - sw

A method for deleting a bad observation which is detected after
the next estimate has been calculated is obtained by using the
preceding corollary. This is done by partitioning the matrix A

and the vector b as before, then the nth estimate is given by

b . ~‘ + form b
A1 bn-1
xn =
| Ay N | by
Partitioning A" = (F! W)
then
X, = (F. W) b1
b
n
and multiplying
xn = an-l + an (11)

The idea is to be able to obtain ;(n-l in terms of x> An’ bn’

th

and Cn which are all available at the n observation stage.
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Noting that ;(n-l = ‘L\t-lbn-l and substituting into equation (10) then
= (I -BB)I +W(I - AWA)
n-1 = (T - BB (I - AW) AFby, 4
using equation (11)
+ IS
X, = (I -BB)(I+WI-AWAX -W) (12)

Since (ATA) +AT = A" we have A; = CnA;I; and by partitioning
A gives

NG : T)

n n An-l ) An

which implies that W = C A - This substituted into equation
(12) leads to

~

- | o T Tty v o 4T
xn-l = (I - Ban) (1 CnAn(I AnCnAn) An) (xn CnAnbn)
with
- T T T T
B, = %A - S I- CnAn) I - Ancn%)

and Cn-l is obtained as Cn-l = 1{1_1 An-l

Application to a Dynamical System

In nonlinear parameter estimation of a dynamical system one
usually uses a linear approximation of the actual parameter state in

a neighborhood of a nominal parameter state. In this case the problem
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of the best estimate for x in the matrix equation Ax b+e is
also encountered. The problem is basically the same, but in this case
x denotes the deviation in observed and computed, and A denotes

a mapping matrix maltiplied by a state transition matrix. The equation

is of the form:

Hey ¢(ty, tp) Y1 €]
He, ¢(ty, tp) Y2 )
- i- = + !
L L] ‘! L]
Lth Mtn’ tO) _ytn_ Len_L

where Ht is a mapping matrix at time t 0 (t " to) is a state
transition matrix from time to to time t 0’ X 1is the state

. . “h .

vector at time t;, y, 1is the t, observation vector, and e,
is the nth error vector. This is applied to the method derived
in equation (10) and the same assumption is made that Ht ¢(tn, to)

n
is equal to Htl (t n? tO)D; -lDtn-l or not equal, with
i
[ut; octy, tO)W

Ht, ¢(t,, t,)

Hty o(t , tg)

-
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To make this assumption means that it is assumed that all the rows
of Dt.l are linearly independent until the system becomes fully
detem‘ined. This assumption becomes natural in most estimation
procedures because the system is of the desired form. The resulting

equation for estimating sequentially the deviation in the initial

conditions is:

X, =X . + P (y, -H st., tIX. ) (13)
t t -1 t Ve T T M Yo t 1
with
H, ¢(t., t)( - bt .ptt . N*
tn‘b n’ 0( n-1 n—1))
. +
if th‘t’(tn’ 1:0) # th’(tn’ 1:O)Dtn-lDtn—l
P = ’
t
n T,,T T -1
Ct,_1o(t,, tp) th (R,(n + th¢(tn, tp)Ct, _je(t,, to)th)
. +
if thp(tn, to) = thy(tn, 1:0)1)rtn_1Dtn_1
and
+ +T
C = D D
t,-1 t,-1 -1

~

i't is the estimate time tn of the deviation in the initial state

n ~ .

vector and ;t is the estimate at time t of the deviation in
n

the state vector of position at time t - oince it is desirable to

be able to calculate ?c't it is noted that
n

Xe = o(tn T )% a4
n n
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which leads to

%t = o(t, tp %t (15)
n 0

and

xtn = Q(tn, to) Ytn (16)

Substituting equation (16) into equation (13) leads to,

-

A -1A ‘_14
X = o(t _1,ty) "x. 4 +P (y. -H 2(t to)e(t, 4,tn) "X, )
tn n-1°"0 tn 1 tn tn 1n n’ 0 n-12-0 tn 1l

and substituting equation (16) again

Xe =0t ,t )X,y +e(t, tP, (y, H, a(t,t_ ) X, an
tn. n’ n-1 tnl n’ 0°°t tn tn n’n-1 tnl
If H, o(t,ty) £ H e(t,t)D. .D then

t ' %o t, 0 T P 1P a1

C, 1is computed sequentially as before,

C = C 4P H, o(t, t)C _
t tnvl tot n’® 0 tnl
T, T T
+ P, (Ht 0(tn, ty) Ce -1°(tn’ to) Ht *Rt")t
n n n n n n
T,T ;T

- C ot , t ) H P
tnl n’ 0 tntn

and

If

Ho o(t, t)) = H o(t,t)D .D _
t “ta Yo A M A
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A

x, = o(t,t Ix_ . +L_(y. -H_ o(t, t X, ) (18)
tn n’> n-1 tnl tn tn tn n’ n-1 tn-l
with
T T.-1
L = G H, ( +H_ G, 4. )
th th-l th Rtn thth th
+ _+T
G = H,Z H
th th th
G = G - L, H 3
tn tn-l tn tn tn~1
and
+ +
DtnDtn - Dtn~1D'cn-1
Equation (18) is obtained by noting that
Ct = D: D:T = (DI Dt y* where t_ is the time when the
n
n nn n n

system becomes fully determined. At this point in time the generalized

inverse becomes the normal inverse and the reversal rule may be used.

T -1
H, 3 (t), tp) H 8 (t), t)
1 1
H 9 (t,, ty) e 8ty tg)
c. = :
tn
e > (1 o) 8 (5, o)
N T.T T.T
G = @ty tp) Hy e ? (8, T0) + 0(tp, t) HLH 2 (5, )

T T -1
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] -1 LT
Ce = 0ty tp 0, He d»(tn, )
T3y
+ o(tn, 2) tzo(tn, tz) + ...
T-1,T 1, T-1
#(t, try) H gHe g0 Ct, )T H ()

and substituting into equation (18). Since the noted inverses are
to be taken of state transition matrices and this class of matrix
is implectic then the inverse is easily calculated without normal

matrix inversion procedures.
Conclusions

In real time operations one encounters the problem of estimating
sequentially a parameter state vector. The preceding derivation
outlines a procedure which one may use in moving from the nth
observation state to the (n + l)St observation state whether one
has vector valued or scalar valued observations. This section
presents a way'of deleting a bad observation and studies the
application to a dynamical system. It is believed that this method
will produce more accurate results than the methods now being used
which were mentioned earlier in this section. It should also be
noted that this technique can be modified slightly so that in the

sequential procedure any number of observations can be made before

the next estimate is calculated.
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5.9 A Generalization of the Wielandt Inequality

The spectral condition number K(A) of an arbitrary non-

singular matrix A is defined in terms of the spectral norm

[53. p. 81] by
_ -1
K@) = ||A]] - [1A7]].

The condition number serves two closely related. purposes;
(1) it is an index of near singularity, hence can provide a measure
of the computational instability to be expected in the process
of inversion,
(2) by means of the Kantorovich inequality it provides a measure of
the rate of convergence of certain iterative processes [53., p. 100].
Clearly, if A is an arbitrary singular matrix K(A) would
not be finite; however, one can define quite naturally a generalization

of the spectral condition number by defining for square matrices
+
K@ = [[AT]]  |[A]]

The purpose of this section is to develop generalizations of the
Wielandt and Kantorovich inequalities using a generalized spectral
condition number. A discussion of these inequalities for non-
singular matrices can be found in [53., pp. 81-84].

Let ||x|| denote the ordinary Euclidean norm of the vector x,

and let the associated operator norm be

Al = sup ||Ax]].

x|l = 1




A singular value of a matrix A is the non-negative square
root of an eigenvalue of AA*, where * indicates the conjugate
transpose of A. Thus the value of ||A|| is the largest singular
value of A. We will denote the singular values of A by 95 (A)
and the eigenvalues of A by N A).

We now define formally what is meant by a generalized spectral

number of an arbitrary square matrix.

Definition 5.4: The generalized spectral condition number

K(A) of an arbitrary square matrix A is defined by the equality

KA = [lAll - |IA7]]

The following properties can readily be established:

(P1) K(A)

Iv

1,

(P2) K(A) = K@A") = k@Y,

(3) if [|aB)*|| < |[A"]] |IB"|] then K(AB) < K(A)K(B).

The symbols R(A) and N(A) will denote the range and null
space of A, respectively and a supers‘cript 4 will denote their
orthogonal complements.

It is convenient to state and prove the following preliminary

lemmas:

2 2

Lemma 5.5: Let o;" >0," > . . . > okz be the eigenvalues of

* . L .
M= A A corresponding to eigenvectors in N(A) , then for any unit
2

' *
vector x in N(A)J', o) < X Mx.
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Proof: Let X1s Xop v 0 ey X be an orthonormal set of basis

vectors for N(A)‘L which are eigenvectors of M corresponding

to 012, . e oey okz, respectively. Let X = .}:1 a;x; so that
1=
*Mx 1; z.0. %, s 0.8, 0.2
X = .2.0. X: X: = I a.a.o.
i,] i371 710 g 11
k
2 2 2
> i lail Ok Ok -

%
Lemma 5.6: Let G = (x,y) M(x,y) where x and y are ortho-

normal vectors in N(A)l'. Then the field of values F(G) is contained

in
* * 1 *
wMv | ww =1, weN(A)", M= AA}

Proof: By definition, F(G) 1is the set of all (complex) scalars
of the form Z*GZ as z varies over all possible unit vectors.
Let z = ('51, ?2), and w = (z;x + z;y), then 2"z = w*Mw.
Certainly w 1is a vector in N(A)‘L and w*w = 1, hence, the
conclusion follows.

The main result of this section is summarized in the following

theorem:

Theorem 5.24: For any square matrix A and any pair of

orthonormal vectors x and y in N(A) .

* .
|xMy < |lax||  [lay[] cos e,

where

cot (6/2) = K(A)
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Proof: The inequality is trivial if A is of rank 1, hence

we assume that if A is singular, it is of rank at least two.
* * .+ 2 +12 2

Now KM = [|AA]] [lAA)T|] = [|All® |IAT]]® = X°(A),

since M 1is symmetric, and (M+)+ = (MZ)+.

1
Let x, y ¢ N(A) and form the two dimensional section

3
G=(x,y) Mkx,y)

The rows of G can be shown to be linearly independent, thus G 1is
nonsingular., Let M and <N be the eigenvalues of G and
03 20, > . . . 2> 0p the non-zero singular value of A. Then

012 = )\M and 012 2N202 cKz. The letter follows from the
fact that G is non-singular and lemmas 5.5 and 5.6.

Let 6(G) denote the determinant of G and consider

[
'
‘x
n

o+
On
i

N &)
I

[\

0% - My M)

If x and y are alloWed to vary throughout N(A)'L , the
*® L3 *
right member is minimized and |x My|2/ (x Mxy My) is maximized
* * k%
when x Mx = y*My. When this is true, |x My|2/(x Mxy My) =

(AI/ Az—l) 2/ ( Al/ Az+1) 2 . The right member is a monotonically

increasing function of )‘1/ A\,, hence is greatest when 1, = 012

- 2




Thus to maximize IX*MYIZ/(X*MKY*My) with respect to all
orthonormal pairs of vectors x and y in N(AIL, these
vectors must be taken in the planes of the eigenvectors v; and
vk of M belonging to the eigenvalues 012 and oKz,
respectively.

Evidently K(A) = cl/oK. Hence, if the angle 6 is de-
fined by

K(A) - K(a)~!
K(A) + k()L

= Ccos 6

we obtain
x"Mx|/ (M My) < ||Ax|| ||Ay|| cos e,

the desired generalized Wielandt inequality.
In the case in which A is non-singular, the Kantorovich
inequality is simply a special case of the Wielandt inequality.

This holds for the generalized situation also.

Corollary 5.3: For any square matrix A and unit vector x

NAY",

* * *
(x x)2 > X Mx x M x sin’ 8.

* *
Proof: Let y = (x x)er - (x M+x)x. It is easily verified

that x*y =0 and that y ¢ N(A)'L .

236
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*t *+t
Let ut=xMx and u_t=x(M)x for t=0,1,2, ...

+ % L
Then y =uMx -u ;x and XMy = ux Mx -u_ju,. But

N(A)" = NO“ = RQMY) = R(M) where R(M) is the range space of M

L
so that M'Mx = x and also Mi'x = x for x e N(A) . Hence

® *
XMy =ug - u_juy and y My = ul(ulu_1 - uoz). Therefore
X & ~
§(G)/ (x Mxy My) = uoz-ulu_l. But (1) implies that this is not
less than sinze and the corollary, a generalization of the

Kantorovich inequality, follows, that is,

* * *
(x x)2 > X Mxx M'x sinze.

An Applicé.tion

As an indication of the usefulness of the generalizations
presented here consider the following concerning the problem of

solving a system (that is, obtaining a solution vector x)
Ax = h

in which we select our initial guess, say X and iterate to an
approximate solution. We require that heR(A) which implies

that a solution exists.

Let

e
]

nel = %t G (2)

where

rn=h-AXn=A(X‘Xn)=ASn (3)
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and

(7]
[}

X - X .

A method of projection is briefly one that assigns at any
step a subspace, defined by Pz1 linearly independent columns

of matrix Y n and selects u " in such a way that if

ChTh = Ynly»

then

is reduced in some norm.

For a given Y 0 it is required to minimize

* *
Snt¢l Sn+l T (sy - Ynun) (s - Ynun) .
Let
* + % 4
Y © (Yn Yn) Yn Sn ¥ Yn 4

where W, is an arbitrary vector.
Then

* * * * TN * s
Sp#l Snel = SpSn ~ Sn 'nUn Yo YiSp * ¥ Yy Yn Yy (5)

*
Since Y n Yn is positive definite, (§) is minimized when w, = 0.

Therefore,
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2 2 * £ 4 &
Hspl1® - lspa 1™ = sy Yy O Y)© Yy s, (6)

The matrices Yn, which are, ordinarily, single column vectors
must change from step to step. The choice Y, is equivalent to
the choice,

L ] + R
Cn A= Yn (Yn Yn) Yn (7)
since
C ® P
Cafp = CpfAsy, = Yu = Y, (O, Y) Y. s,

for any She This in turn implies that
* + R
CnA = Yn 0’nYn) Yn *

But this is feasible only if Y; = V;A for some Vn, since
otherwise G could be obtained only after calculating A'.
Taking Y; = V;A, where V; is selected and Y, computed

we have
] ® ® + R
C.nA = A Vn (Vn AA Vn) VnA
or
'Y W ® + B +
Cu=AV, (VA V)"V AR . | (8)

It follows then from (6), (7), and (8) that
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2 2 x % P I Y
sy 7 - Tspeq ! sy AV (V AV )V As

* * k4. %
T Vn(VnAAVn) Vn_rn .

If each Vn =V, is a single column vector, then from (2)

and (8)

A* * AA* + %
X = +
n+l - *n Vn (Vn Vn) Yn Tn

since 1 = Asn e R(A).

* P *
Let u =v_ rn/(vnAA rn). Then x ., =X, +uA v, and

2 2 _ ‘R
or
* * _ % 2 % £k
(Spe15041)7 (5, ) = 1 —Irn vnl /Sy SpVn M V. (9)

‘The method of steepest descent imposes. the restriction that Vn =T,.

The generalized Kantorovich inequality then provides a bound for the

right side of (9). By the corollary and (3) it follows that

*

* 2 * * x4 . 2
Irnrnl > A rr (M) r sin®e

=

* an A AT ¢ sin®
rn rnrn rn sin 6

Iv

* AA* * .2
I‘n I'nSn Sn sin 6.

Iv
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And finally from (9) we conclude that

2 2 2
[ speq /s 17 > cos® .




CHAPTER 6

COMPUTATIONAL PROCEDURES

6.1 Introduction

In recent years many techniques for obtaining the pseudo inverse
of a matrix have appeared in the literature. These techniques are of
various natures, including explicit expressions for each element of the
pseudo inverse to approximate determinations. In this chapter several
of these methods are presented along with some comment concerning their
merits. Each method is identified by the name of the author of the
paper in which the method is presented. A numerical example is included
to illustrate the method presented. The same example is used to
illustrate each method to facilitate comparison of the computation

schemes.

6.2 Householder Method

Let A be an arbitrary matrix of rank r, and let A = FR*
where each of F and R have r linearly independent columns. Then
A" =R (R’kR)'1 (F*F)-1 F. Although this method gives an explicit
form for A' it requires that: (1) A be factored as FR*, which is
not easily accomplished on an electronic computer. (2) The inverse
of the non-singular matrices R*R and F*F need to be obtained,
and (3) the product needs to be formed. The factorization of A may
be accomplished by several procedures. Householder [53] mentions

three methods. The first of these is an iterative scheme. Let

242
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A=Al o (31(0), a2(0)

and e be the kth

s o e ey am(o)) #0 be any nxm matrix

column of the identity matrix of size k x k.

Let j, be the smallest index for which a, (0) # 0 and el a. (0) # 0.
1 i )1 1

That is, the element in position i1 is nonnull. Let Iij denote

the elementary permutation matrix whose effect of multiplying a

th th

matrix on the left by I.. 1is to interchange the i and j TOWS;

J
that of multiplying on the right is to interchange colums. Then
for some elementary triangular matrix Ll'l, possibly the identity,
the matrix

a _ ;-1 (o)
A =1 I1i1 A
is null in the first jl'1 colums, and null below the first element

in the next column.

If every row below the first in A(o) is null, the algorithm
is complete. If not, and if m = 2, let A(Z) = A(l) and the
algorithm is again complete. Otherwise, repeat the process by pick-
ing out the first column containing a nonnull element before the

first. Let this be aj (1). Then for some iz, ezT I

1 2
, the matrix

A. D 4.

212 iy

Hence for some Lz-

(2) - 11 A
A =L, Iei2 A

is null in the first iq - 1 colums, null below the first element
in the next j2 - jl colums, and null below the second element
in the next column.

The process is continued until reaching A(p) where either

p = n or else all the rows below the pth are null. Hence
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A = M Al

where

= I,. L I,. L....
My 1, 11 Tai, B2

which is nonsingular, and A(p) is a matrix whose first rows
are linearly independent with the remaining rows null, If p <n,
let P be the matrix obtained by dropping the n - p rows from
A(p) and let M be the matrix obtained by dropping the last n - p
colums of Ml' Then F =M and P* = R will be the required
factorization.

The products R*R and R*F are Hermitian and full rank so
that their inverses can be obtained by standard procedures for
inverting symmetric matrices. Finally the pseudo inverse, Af, is

computed as the product

] - %* - *
A= eI ERLE

This method requires the factorization of A which, by the
method outlined above, requires considerable searching and matrix
manipulation although the process is straightforward. The two
required inversions are also troublesome, however, there are
relatively good procedures for inverting Hermitian matrices and the
two inversions could perhaps be done in parallel.

An example is now given to illustrate the above technique.




24t

> =A@

10 11
01-10
11 01

A (
which is a 3 x 4 matrix of rank 2.

Let

le:

Ex

Let I11 = T and

then

-1

A _

—OOo
—~—-o
1

O—~HO

-1

2, so that

r(A)

Hence p
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*
Letting F = M and P = R we obtain
* *
R R =({3 -1 ) and F F = 2 1 \
-1 2 1 2
Thus
® - ® - *
A =r@e’nt EFple

1 0 ( 2/5 1/5 ) ( 2/3  -1/3 ( 1 0 1 )
=] 0 1 1/5 3/5 -1/3  2/3 0 1 1
1 -1
1 0
3 0 3
= 1/15 -1 5 4
4 -5 -1
3 0 3

6.3 Penrose Methods:

A somewhat similar method is proposed by R. Penrose in [71].
His method is to partition the given matrix after suitably arranging

the rows and colums in the following form:

A B
( c s )

where A 1is a non-singular submatrix whose rank is equal to that of

the whole matrix. Then the pseudo inverse is given by
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%*
® % ® %
(A B_l) - (APA APC)
® =% ® %
C C"B B'PA°  B'PC

Where P = (AA* + BB*)'1 A (A*A + C*C) "1 The matrices AA" + BB
and A*A + C*C are positive definite, since A 1is non-singular.
Thus, the pseudo inverse of any matrix can be expressed in terms
of ordinary inverses of matrices.

The same two basic problems as in Section 2 appear again.
Namely, to partition the given matrix into a form containing a sub-
matrix with rank equal to the rank of the given matrix, and to
obtain the inverses of two nonsingular matrices. Also, a method
must be available for arranging the given matrix into the required
form. This could be some method of elimination in which the rank
is determined at the same time as the arrangement is done.

Using the same matrix as in Section 2 we illustrate this

method.
Example: Let
1
R = -1
0
LetA=(1 0) B=(11 C = (1, 1), then
0 1 , -1 0 ,

>v
—
[}
>
9|
i
o]
|
~
o
=
>*
>
I
gu-
n
S S
S ———
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* ®
BB = /2 -1) and cc = [1 1)
(—1 1 (1 1
* x -1 * x 1
Hence P = (AA + BB) AAA + CQO
= (zm us)(l o)(zn dﬂ) = 1a5(’3 o)
1/5  3/5 o 1/\-1/3 2/3 -1 5

Hence

+ x % % %
R A PA A PC
x % ® %

B PA B PC

B R S CR B B [
SRR D660

30 3
. 1 5 4
= V1S Vg 5

3 0 3

By comparing this example with that in Section 2, it can be seen
that the two methods are equivalent. The two matrices which are

inverted are identical.

Method II (Penrose)

Penrose has also given a recursive method for obtaining the

pseudo inverse of a matrix which is extremely concise.
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He makes use of the fact that the pseudo inverse of a given

matrix A can be obtained from any matrix D satisfying

* * .2 . e o . + +R 4
A A = D(A A", since multiplication on the right by A'A" A
* *

gives A" = DA, Let B=AA = (bij)’ and define a sequence of
matrices Cj for j=1,2, .. . by

G =1

C. 1
+1 = T.5 t C.B) - C.B
J 3 race ( j ) 3

Penrose has shown that if r is the rank of the matrix A, then

rC
= 1 I
Cr*lB 0 and trace (CrB) # 0, so that is D Trace (C; .
then DB2 = B as required.

This method has many advantages: It does not require the
factorization of any matrix; it does not necessitate taking the
inverse of a matrix. It involves only the basic matrix operations
of scalar multiplication, matrix addition, multiplication and the
trace. It does not require initial knowledge of the rank of A,
but rather this is determined by the algorithm since the iteration
stops when trace (CkB) = 0, which is the case when K = tr (A) + 1.

If A is n xm, the procedure can be adapted so that the
matrices B, Ci’ D are all square of size min (n, m). Hence, if
m<n, B-= A'A is nxn and the method is used as outlined.
However, if m > n, the pseudo inverse of A"e is found so that the
dimensions of B are n x n. Then using the relation (A’k)+ = v(A+)*,

the pseudo inverse of A is obtained.
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le: Let

Ex

Then

and

Now C1 = I, ClB

2+2+2+2)
1

|
|

O O O ™~

O O ~ O

O -~ O O

-1 -1 -2
6 1 -1
1 6 -1

-1 -1 6

6
-1
-1
-2

|
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Thus
1 0 0 o0 6 3 3 6
C; = 0 1 0 o (6 +9+9+6) - 3 9 -6 3
0 0 1 o ¢ 3 6 9 3
0 0 0 1 6 3 3 6
9 -3 -3 -6
=|-3 6 6 -3
-3 6 6 -3
-6 -3 -3 9
C3B = 0, thus the rank of A is 2, the iteration ceases, and A
is given by
*
. N C A ) 6 -1 -1 -2\ {1 0 1
A = DA = = -1 6 1 -1 0 1 1
tr(C.B) W 11 o106 1)l a1 oo
-2 -1 -1 6 1 0 1
or
3 0 3
+ 1
A = I -1 5 4
4 -5 -1
3 0 3

To show that this method is programmable for computer solution,

a flow chart is included.
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Begin Read n, m ry
a.. i=1,n B=AA 5 Co=1
Uoj=1m o
_ Compute l
j =i+l CjB j=1
Cj+1A= trace (C.B)

j

I-C.B
J

trace CjB =0

Fig. 1 Flow Chart for Penrose Method 2.

Print

End
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6.4 The Decell (Cayley-Hamilton) Algorithm I

A formula for the pseudo inverse of an arbitrary complex matrix
has been derived by Decell [33] based upon the Cayley-Hamilton
Theorem. This computing scheme leads directly to a recursive algorithm

which is easily adapted to machine computation.

Theorem 6.1: Let A be any n x m complex matrix and let
_ n n n-1 n-k
f()) = (-1) (aOA + a)x oot gl oo ta gt anI)
®
be the monic (a0 = 1.) characteristic polynomial of AA . If

1 # 0 is the largest integer such that ay # 0 then the pseudo

inverse A" of A is given by

+

-1.% x k- X k-2 *
A= el A [N e a ) e L e A ey 1)
If k=0 is the largest integer for which a =0, then A" =,

®
Proof: By the Cayley-Hamilton Theorem, AA satisfies its

characteristic equation so that
*® * n- X n-
£AA) = (D™ + a e L e g )R L

*
+ an_lAA + anI =¢.
If k# 0 is the largest integer such that e # 0, then if we

* 0
take B = AA and B

= I, then
Bn+aan'1+ . .. +akn-k= o.
gnkgk 4 aBle .. eaDn =
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This latter equation proves the existence of a solution to the equation

Bn-kx -

and, the general solution is given by

n-1

x =81 vy - vkt gk

y - g™kt pky
In particular there exists a Y such that

BK + aIBk'1 +...+al=Y0 " Kytpnky |

*
Since B = AA is normal then for each integer p, (Bp)+ = (B*')P
and B'B = BB'. This fact together with the fact that BB is idem-

potent implies

(Bn-k)+Bn-k - (B+)n-an-k - (B+B)n'k - B*B.

Hence,
k k-1 = - pt
B + alB + LI ° + akI - Yl B BYlo
X 4 & +
But (AA) (AA) = AA so that
® *
B'B = (aA) ) = ',
Therefore,
k k-1 _ _aat
BT + alB + ... 4 akI = Y1 AA Yl'
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Multiplying on the left by A we get

A'BK 4 alA,"Bk-1 + ., . .+ akAf =9,

. +  * + * .
Noting that A'AA = AB = A we obtain

* k-1

A'B k-2

x * +
+a;AB ...+ ak-lA = -akA

or

+

AN = g !

S1.% * k- * k-
R W (TS N/ Y S LSt o

*n + T
If k=0,then (AA) =90 hence A=% and A =A =¢.
As a consequence of Theorem 6.1, D. K.Faddeev's modification of
Leverrier's method [39] can be further modified to describe a

computing algorithm for the generalized inverse of A. Consider

the following sequence Ab’ A AZ’ . e ey Ak:

1,
A =0 -1=q, B, =1
*
A1 = AA tr A1 = q Bl : Al-qll
E3
A, = AA'B, tr A, _ B, = A,-q,l
7" 9
=" B, . = A-ql
A1 = M B, Ay k-1 = Aa
X -1 qk-l
*
X T %

Faddeev shows that q = a;, i=1, .. ., k; hence by Theorem 6.1

we have either that Af =¢ or
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- _.-1,*
k A Byog
Exa_xmle: Let
1 0 1 1
A =10 1 -1 0
1 1 0 1
Then

2 1 3

It is computational to confirm that £() = (-1) (%> - 8)% + 151),

hence that k = 2, a, = 15, a = -8, and a; = 1. Thus

+ 1**8
A' = - A - 8D
- L (15 3
= -F-
4 -5 -1
3 0 3

It should be noted in using this algorithm that if A is n by m
*
with m > n, then one could replace A with A in the above and using
& *
the relationship (A )+ = (A+) obtain A", This enables one to work

with the smallest possible matrices in the characteristic polynomial.

Method II (Decell)

Decell [32] has presented another explicit form which gives rise
to an algorithm for the computation of the pseudo inverse. This par-

ticular form arises from the following theorems.



Theorem 6.2: For any matrix A, A = WAY, where W and Y

are, respectively, any solutions of

*
WAA = A (1)

*
A AY

]
>

(2)

Proof: Properties P3 and P4 of Theorem 3.1 guarantee a solution
to Equations 1 and 2, in particular W=Y = A*. If W and Y are

solutions then
* *® * ®
AWAA = AA  and A AYA = A A,
* ®
But since BAA = CAA implies BA = CA , then
AWA = A and AYA = A,
Also,
& % x % ® * ® %
WAAW =AW and YAYA=YA
so that
*® *®
(WA) =WA and (AY) = AY.
Therefore, X = WAY satisfies the Penrose equations:

A(WAY)A = AYA = A

(WAY)A(WAY) = WAWAY = WAY
® & X X *®
[wan)Al™ = A"av” =AM = wa)® = wava
* * R R x
[AWAY)] = YWAA =Y A = (AY) = AWAY .
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Thus A’ = X = WAY .

* *
Corollary 6.1: For any matrix A, At = A SIASZA

where S1 and S2 are, respectively, any solution of

* * * '
(AA)S; (M) = () (3
and
* * ®
(A A)S2 (AA) = (AA . (4)
Proof: Since BAA* = CAA* implies BA = CA, taking transposes
we get |

® * ® *® X R X X
AAB = AAC implies AB =AC

Applying this result to Equation 3
* * * ® ®
AA SjAA = AA implies A S;AA = A
*
so that A S1 = W satisfies Equation 1 of Theorem 6.2. Similarly,
* * )
if A*AszA A=AA, then
* * x
AAS, A = A,

hence Y = SZA* satisfies Equation 2 of Theorem 6.2. Then by the

conclusion of this theorem we have the result, namely
+

ok *
A = ASIASZA .
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Theorem 6.3: If B is a matrix and there exist nonsingular

matrices P and Q such that PBQ = E is idempotent then B = QEP

is a solution of BXB = B .

Proof: Since

then
BEB = (p‘lﬁq‘l)qﬁp(p'lﬁq'l) =p gl -plgq! - 3.,

Corollary 6.1 and Theorem 6.3 suggest an algorithm for computing

the pseudoinverse of a complex matrix F. Recalling that
® *
FF=CFRN'F,

we raduce the problem of finding F' to that of finding the pseudo-
*® R
inverse of the hermmitian matrix F F = C. Since (Cz) = C, there

exist nonsingular matrices P and Q such that

. ¢
2 T
PC™Q ==( ) = I
s o °

where Ir is a rank r identity matrix. We let C

A in Corollary

6.1, so that

* * * * 2
AA = AA = CC = CC = C

Then according to Theorem 6.3, choose solutions S =8, = QI P

so that
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and

Computing programs are available for calculating S, and S

1 2
(e.-g., STORM, Statistically Oriented Matrix Program, IBM). In general,
these programs only compute some solution of the equation AXA = A,
usually different from A", These results allow one to construct

a solution to all four Penrose equations given only a solution to the

first, namely, AXA = A.

6.5 Greville Method

Greville presents a concise recursive algorithm for computing the

pseudo inverse of a matrix. The algorithm is as follows:

th colum of a given matrix A, and let

Let a, denote the k
Ak denote the matrix consisting of the first k colums. Consider

Ak in the partitioned form (Ak_l, ak) .

Compute dk = A;-l ay
+
and Ck = 3 " A1 q - If C # 0, let bk =Cp -

If C =0, compute b = (1+d d) 7t d A .

Then

+ +

A

L}
p-
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To initiate the process, take AI =0 if a, is a zero vector;
-1/2 al

otherwise, = (a1 1) a; .

This algorithm is very easy to follow and compute. It requires

only one decision in each cycle. It requires no inverse of a matrix.

Exgmle : Let

1 1
0) , a;, =10 , then A = (1/2, 0, 1/2).
1 1 1

g = Aa=am 0,19 (1] - (1/2)
Z-Alaz—(l/”/) 1 - /
(-1/2 ) ,
C, = a. - d = 1 0
2= %2 A% 7| g,
A} - db 2/3,- 1/3, 1/3
Hence b, = c; = (-1/3, 2/3, 1/3) and A; =( . b : 2) N
2 -1/3, 2/3, 1/3
1
Now d3 = A; az = (_1)
1 1 0
Cz = ag - Ay dg _% i (1) } (-i) - e
-1 T ,+
Hence b, = (1 *d d-) d.'sAZ
cavnta o (Y )

(1/3) "1/39 0)

|
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> - d, b 1/3 0 1/3
Thus A§=(Azb33> =(o /3 1/3

3 1/3 -1/3 0
2/3
Now d4 = 1/3 and Cy = 0 so that b4 = (1/5, 0, 1/5)
1/3
Al -d, b 3 0 3
and A; = 54 4) = %-5 105 4
b, 4 -5 -1
3 0 3/ .

To show that this method is programmable for computer solution,

a flow chart is included.
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Read n, m
i,j=1,1 to n,m

+ -1T
A1 = <a),ap> "3

+
de = A1y
= A " A

Fig. 2 Flow Chart for Greville Method
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6.6 Hestenes Method

Hestenes obtained a scheme for inverting matrices by a process
called biorthogonalization. This process can be extended and modified
to all rectangular matrices of any rank.

The concept of biorthogonality can be expressed in matrix form
as follows. The vectors (in an n-dimensional space) Ups Uyy « v oy

u, can be considered to be the colum vectors of a matrix U and v

1’
111, v 0 the row vectors of a matrix V. The set is biorthogonal

if
u = 1.

If n=m, then V is the inverse of U.

Hestenes poses and solves the problem: Given two sets Uiy o 0 ey

u and Vis o e ey Y of n vectors in an m-dimensional space
(m > n), obtain a biorthogonal system by modifying the v's. The
solution is arrived at by letting vio), e ey Vr(10) be the
initial choice for the v's. These vectors are modified successively
in n steps. After n steps the vectors v£n), « o ey vn(n) will
be a solution to the problem.

In the kth step the vectors v_lgl-l) are transformed into a

new set vi(k) by the following computations. -
k-1 T,11/2
C = <v1£ ), uk> where {a,b) = (a2,
¢ = ci
k - kk

Sk = <"J§k-1)’ “1<> j#k

O L (kD)




265
(k) . k) . (K) - . .
where cij = Gij G #Kk), k. = Sk c:ij = -Ci1k for 1 # k.
The only difficulty is to insure that Sk # 0. This will
*®
not arise if V(o) is taken to be U .

To compute the pseudo inverse of a matrix, the method is
modified by adding rows to the original matrix which are orthogonal
and which raise the rank of the matrix to its column dimension.
Then the method is applied to the resulting matrix. The pseudo
inverse of the original matrix is obtained by deleting the last

added colums of VW,

Exgmgle: Let

1 0 1 1
0 1 1 0
U ={1 1 0 1
1 0 0 -1
0 1 1 -1
and let
1 01 1 0
*
v - ¢ =[0 1 1 o 1
1 -1 0 0 1
1 0 1 -1 -1

Then cll = <V£O)’ u1> = (1’ 0’ 1’ 1) 0)(1,‘09 1’ 1’ O)T = 3

so that c, = 1/3.
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0
CZl =< % )’ u1>= (, 1,1, 0, 1)(1’ 0, 1, 1, O)T =1,
Cg}) = CyHy = -1/3
€31 =<"§°)’ “1>= 1, -1, 0,0, D@, 0,1, 1, 07 =1,

1 .

C5 -C31 € = -1/3

C41 =<V4(»0)’ ul) =(1,0,1, -1, -, 0, 1,1, O)T =1,

) - "Cqp € = -1/3
Hence
1/3 0 0 0
-1/3 1 0 0
W33 0 1 o
-1/3 0 0 1
and
1/3 0 0 0 1 0 1 1 0 1/3 0 1/3 1/3
(1) -1/3 1 0 0 0 1 1 0 1 -1/3 1 2/3 -1/3
Vi = -1/3 0 1 0 1 -1 0 0 1 = 2/3 -1 -1/3 -1/3
-1/3 0 0 1 1 0 1 -1 -1 2-3 0 2/3 -4/3
Now

cpp = vV, u, = (-1/3, 2/3, -1/3, 1)(0, 1, 1, 0, 1T = g/3,
B = 38

ey = (viV, u, )= (1/3, 0, 1/3, 1/3, 0(0, 1, 1, 0, T = 1/3,
D - _ys

C32 = <V§1), U2>= (2/3’ '1, "'1/3, ‘1/3, 1)(0’ 1, 1, 0’ l)T = _1/3’

) = 18

= s ©
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ciz= vuy = @3, 0,23, 43, -1, 1, 1, 0, HT - -1/3,
cgg) = 1/8.
Hence
1 -1/8 0 0 /3 0 1/3 1/3 0
v - @y 5 38 o0 o 1301 273 -173 1
0 1/8 1 o 2/3 -1 -1/3 -1/3 1
0 1/8 0 1 2/3 0 2/3 -4/3 -1

3/8 -1/8 2/8 3/8 -1/8
-1/8 3/8 2/8 -1/8 3/8
5/8 -7/8 -2/8 -3/8 9/8
5/8 1/8 6/8 -11/8 -7/8

Likewise

(3) 6/21 0 6/21 9/21 -6/21
\ = -2/21 7/21 5/21 -3/21 9/21
5/21 -7/21 -2/21 -3/21 9/21

15/21 0 15/21 -30/21 -15/21

and

v <l s 0 15 35 -1
-1/15 1/3 4/15 -1/5  2/5
4/15 -1/3 -1/15 -1/5  2/5
1/5 0 1/5 -2/5 -6/5

Hence the pseudo inverse of A is obtained by deleting the last
two columns of V(4) .
. 1/5 0 1/5
A = [-1/15 1/3 4/15

4/15 -1/3 -1/15
1/5 0 1/5

Hestenes makes the statement that the process requires n divisions,

2n3 multiplications, and an (n - 1) additions.
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6.7 Pyle Method

It has been shown that the best approximate solution of the
equation Ax = b is unique and is given by x = A'b. Pyle has
facilitated applications of this type by contributing an algorithm
for obtaining Afb, assuming AA'D = b,

This computational technique is a variation of the gradient
projection method. The basic steps in the procedure require the
application of the Gram-Schmidt orthogonalization process first
to the column vectors of Af » then, if A is not full row rank,
to the colum vectors of A. A computer program (Fortran IV for the
IBM 7090) using the method has been tested and used in connection
with the generalized inverse-eigenvector method for solving problems
in linear programming.

Recall the following properties: A necessary and sufficient
condition that Ax = b be solvable is that AA'b = b, and if this
condition is met, then x = A'b = I - AfA)y for some (compatible) vy.

Also, A, AfA, A+, and A'A all have rank equal to trace
AfA, (Af)* = (A*)+ so that we may assume that in A(m x n) that
m < n.

Assume the m x n complex matrix A satisfies AA'b = b,

Let the row vectors of A be denoted by {a(i)}, (i

1, ..., m;
the elements of b by {b(i)}, i=1,...,m, and the ith

equation in Ax = b may be written either as the vector product

a(l)x =b, (i=1, ..., m, or the inner product (x, a(i)*) = bi’

where the inner product (u, v) of two vectors is defined by




n L
(u,v) = I uv., . The first r linearly independent a(d)

=l T e ~(i)*
will be designated {a(l) },@=1, ..., 1) . The {3(1) } are
determined by applying the Gram-Schmidt orthogonalization process
1) *
to the vectors {a(l) },(@=1,..., m), obtaining the ortho-

normal system of vectors {n(i)}, i=1, ..., 1), where

@ . 1 @ ® . _1 - (k)
n = = a s N = n s k=2,3, ...,
TR 113097
with |
20 | 500% f;i (a0 @)y M)
1=

~(i)#* AL
(Remarks: a()* is the first non-zero a(d) . The notation ||u]| ,
the length of u, means /(u, u) for any vector u.)

Determine successively the scalar values {ak} and
vectors x(k) for (k=1, .. ., r) by using the relations
N - ~(k)*
b, - kD s00*

k
s =
k (Y'I(k) , A(k)f)

and

& o &1, akn(k)

where x(o) =0 , (the null vector) and {Bk} y (=1, ..., 1)

r
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consists of those elements of { bi}, (i=1, . . . , m) corres-
. 1) %
ponding to the linearly independent subset { a(l) } determined

in the application of the Gram-Schmidt process, listed in the same

order.

+

Theorem 6.4: x(r) = ADb.

Proof: The proof is accomplished by showing by induction
that Ax(r) = b, then noting the consistency assumption
AA'b = b. Since x(l) = aln(l), where

b
W . 1 s . By
n = _an—' Ia ' ' a and O.l (n(l) , 5(1)_*_')- ’

then

b
0 Lo 1 (e 1 _

TEMT a®,aO7

@*
byfla |l G

I OLR LT OLTE

~ * ~ *
By the Gram-Schmidt process M(acl) s o e ey a(k) ) =
M@, oL, @) where M@, L L L, 0 ®)y s the linear
manifold spanned by the vectors {n(l)}, i=1,...,k.

Suppose xk-D)

is a solution of the k-1 equations of the system
~(1)* .
Ax = b corresponding to {a(l) },@E=1,..., k1), i.e., that

a(1) (k1) _ Bi’ (i=1,. .., k-1). We must show that




é(i) x(k) = bi » (1=1,. .., k). Now, (n(k), n(i)) = 0
for (i=1,...,k-1), together with M), . . ., &1

-~

ma®D*, oL, aEDY mibes
N G IR LA

and thus

A0 | @D, L @)y . 0ED L g

% ° i

for (i = }, o o« 5 k-1).
Now if
B, - D Z0*
N €3 B (S L ’

then

- k-1)  z(k)*
By - (¢ )'a())~w%&)=

@) (k) _ -(k) (k-1) ]
a‘’x = ga‘'’x + [ ] a
a® , a®T,

Hence,

axM oy,

) =

-~

by

Under the consistency assumption MAA'Db = b, the equations corres-

*
ponding to any linearly dependent colums of A will be auto-
matically satisfied by x(rj, or the system is inconsistent. I

: ]
practice, if dependent colums of A are encountered, the

n

corresponding equations may be checked for consistency by substitution
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of the current x(k)

and then set aside since they do not enter into
the continued application of the algorithm.
Thus Ax(r) = b where x(r) is a linear combination of

*x
columns of A . Since
* * * * R
(I-AWA =A -A" =4A - @A")°A
* . K * *
A - (AAA) =A -A =9
then x™ is an eigenvector of (I - A'A) for eigenvalue A = 0.
That is A"Ax(P) = x| By property 3.25, x(™ = a*b + (1 - A*A)y

for some vy.

Thus
x(T)

Aax(D) = A'A'D ¢ (1 - ATy

= AT + (a'A - ATata)y

A'b + (%A - A'A)y

+

=Ab.

Now, if AT = AT = I, the above algorithm may be used to
obtain, successively, the colums of A" by taking successive b
vectors equal to the colums of the m xn identity matrix. Unfor-
tunately M =1 if and only if r = m, a somewhat special case.
Usually A" # I and the method must be extended as indicated by the

following theorems.

Corollary 6.2: AX = Iy is always solvable and application

of the gradient projection algorithm with b vectors chosen,

successively, as colums of MY, yields X = A'AAT = A",




Proof: A'AA" = A* implies AA+(AA+) =M for any matrix A.

But this is the consistency hypothesis.
Corollary 6.2 would be of little interest except for the

following theorem which gives a method for obtaining AAT.

Theorem 6.5: Let (¢}, (i=1, ..., 1) be the ortho-

normal set of vectors obtained by applying the Gram-Schmidt process

to % colums of A. Then

b o= 1 D D*
i=1

Proof: The vectors {s(i)} , i=1,. .., r) provide an

orthonormal basis for the colum space of A since they are ortho-

normal linear combinations of the linearly independent colums of A.

Since AA'A = A, the {5(1)}, (i=1,.. ., r) are eigenvectors

of AA' corresponding to the eigenvalue A = 1. Since rank At =

rank A'A = trace A+A, and since (A+)+ = A, then rank A = rank YA

Therefore, r = rank A = rank AA" = dimension of the range of AA+,
(written R(AA+)). Thus the {E(i)}, i=1, ..., 1) provide

an orthonormal basis for R(AA'). Extending the (¢}, (i =1, . .

r) to an orthonormal basis {E(i)}, i=1,...,m of " ,
m-dimensional complex unitary space, yields vectors {g(i)},

(i=r+1,...,m whichare eigenvectors of AA" for eigen-

x (s
value A =0, since for (i=r+1, ... ,m),<b=A€(1) and thus

® = (A+)*A*g(i) = (AA+)* E(i) = At E(i) .

273
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Consider T = [E(l) s o v ey gcr)], the matrix whose colums are
1)y . + o . + *
the {¢“7}, i=1,...,r). Then AAT=T implies AATT =TT .

It is easily verified that

m

i=1
hence -
m . . Tr . S\ R *
I - z E(l)g(l)* = z E(l)g(l) = TT .
i=r+l i=1
Thus
m . -
T = A =@ - 1 W@ ot v 0=t
i=r+l

Since the {E(i)}, (i=r+1,. .., m are eigenvectors of

AxY corresponding to eigenvalue A = 0,

Example: Let
1 0 1 1
A =10 1 -1 o0
1 1 0.1
Thus
1 0 1
* 2)* 1 3)* 1
ey o), @ RO !
1 0 1
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Apply the Gram-Schmidt process, obtaining

1 | 0

a _ 1 0 2 _ 1 3 ~(3) _ 0
n e 1 n = ‘JT_S_ -2 ’ n = 0
1 1 0

Thus a(D* = a(l)*, a@* L, @D* 44 r - rank A = 2. Since
r=2<3=m, A nmust be computed. Let the column vectors of A

be designated

1 0 1 1
ccl) = (0) , c(z) = (1) , c(3) = (—1) , c(4) = (0) .
1 1 0 1

Apply the Gram-Schmidt process, obtaining the r = 2 vectors

1 -1
Ol sl
2o \1 o \1

Then

Note that trace AA’ =2 =r,

Now solve Ax = b(i) i=1, 2, 3) where

2 1 1
- (2)=1_) (3)31()
1 , b 2 , b 1
(1) Br(1 3\;

Neb)

=
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(Observe that, in general, only r components of each b(l) are
required; in this case, the first r.)

Applying the gradient projection algorithm, obtain

corresponding to b(l): @y = %/-?i y oy = -_2%_5_ ,

1 3
xtl) = ;2)' (1) ; X(Z) = %’5 'i = the first colum of A';
1 3
corresponding to b(z): a, = lg-?f» y Oy = -'%-E ’
1 0
X(D = _%. (1) ; X(Z) = %- _i = the second colum of A';
1 0
corresponding to b(s): @ = 1%— » Oy = 5—{-15-5— ’
1 3
X(I) = % g . X(Z) = %—5- _i = the third colum of A'.
1 3
Thus,
3 0 '3
N -1 5 4
15 4 -5 -1 .
3 0o 3
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6.8. Ben-Israel and Werson Method

Ben-Israel and Werson presented a method for computing the
pseudo inverse of a given matrix which is equivalent to the methods
of sections two and three. However, a condensed tableau is pre-
sented to facilitate the computatioﬁ procedure. It does require
the inversion of only one matrix instead of two as in sections two
and three.

The problem method is formulated as follows:

Let A be the given matrix. Let E be a nonsingular matrix

and P a permutation matrix such that

&
*
EAAP ( IrD)(H\) W
oo 7 0
* *

where r is the rank of A A. Using the relations PP =1 and
&
AM = A* we have

* 3
EATAPPA" = EA (2)
which implies
» ®
pAY = EAMAPYRAY 4 2 _ 3)

where Z is in the null space of EA*AP.

We will now show that Z = 0. By (1), the colums of Z lie
in the null space of H*. The latter subspace is the orthogonal
complement of R(H) = R( (EA'A")" ) = R(®"A"AE"). since E is
nonsingular and R(A*A) = R(A*) = R(A+) » we verify that
R(H) = R(P'A*). On the other hand R(H) = R( (EA™AP)" ) = R( (EA"AP)*).




*®
Therefore R(P'A') = R( (EA'AP)* ) = R(H), and Z, whose colums lie
in N@H'), must vanish by (3).

Collecting the above results,

‘ A\ 4
PA" = (EA"AR)*EA" =(5‘) B = @™ R’ @)

: *
From (1) and (2)it follows that the last (n - r) rows of EA are
zero; from the definition of H* it therefore follows that the

x *x *
matrix H EA consists of the first r rows of EA . Therefore
+ % L

+k X * *
HHEA =H HEA = (H 0)EA (5)

From (4) and (5) and the fact that P is a permutation matrix it
follows that

*
A" = PH'EA (6)
Finally, if F is an n x (n - r) matrix such that

NE) = R(H)

then it is well known that

and (6) becomes

® &
A" = P(I - FF)EA . (N

27:
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Given H (Ir D), a natural choice for F is

An elimination method for computing the pseudo inverse may be
based either on (4) or (7). Both equations reduce for nonsingular

* *®
AA to A" =EA , and for nonsingular A to the well-known result
-1

* ® *
= EA , where E 1is defined by EAA = In' If the matrix A A

is singular then the method (4) rewritten as

A

* _ ®
A* = p (Ig) (a.+om) oEa (8)
D
*
required the inversion of the r by r matrix (Ir + DD ) . Similarly,

* _
if A A is singular, the method (7) rewritten as

+ _ D X -1 & _ *

A = P [I - (:i-:-) (In_r + D D) (D In_r)] EA (9)

requires the inversion of the' (n - r) x (n - r) matrix (In_r + D*D).
Since zero rows (or colums) in A result in corresponding

zero colums (or rows) in A+, an obvious reduction in work can be

achieved by working with ;\, a matrix obtained from A by striking

all zero rows and columns; computing k by either (8) or (9) and

inserting zero colums and rows to obtain A'. Another possible

reduction in computations and space is by working with A*A if

*
m>n (A is an mxn matrix), and with AA if m <n. The

279

®
latter case results in A @ which must then be transposed to obtain A'.
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For nonsingular matrices the above methods require more operations
than the ordinary inversion methods, due to the formation of AfA.
Thus for the nonsingular case: m=n = r, both methods require
(5/2 n° - 2n% + n/2) multiplications, (3/2 n® - n/2) divisions
and (5/2 n° - 2n® + n/2) additions.
Because the last (n - r) rows of EA* are zero, in method (9)
one need not compute the last (n - r) colums of the matrix
(1 - FF*). As in other elemination methods, the above methods
depend critically on the correct determination of the rank, which in

turn depends on the approximation and roundoff errors.

Example: Let
1 0 1 1
A = 0 1 -1 0O
1 1 0 1
% 2 1 1 2
AA = 1 2 -1 1
1 -1 2 1
2 1 1 2
PO 2 1 1 2 1 0 1
(AAA) = 1 2 -1 1 0 1 1
1 -1 2 1 1 -1 O
2 1 1 2 1 0 1
2 0 1 2 2 1 1 2 1 0 1
0 3/2 -3/2 0 1/2 1 1/2 0 3/2 -3/20-1/2 1 1/2 >
0 -3/2 3/20 1/2 1 1/2 0o 0 o O o0 o0 o0
0O 0 o0 O O 0 0 0 0 o0 o0
2 1 1 2 1 2 0 2 2 4/3 -2/31/3
0 1 -1 0-1/3 2/3 1/3 o 1 -1 0-1/3 2/31/3 >
0 0 0 o0 O 0 0 0 o000 0 0
0O 0 0 0 O 0 0 0 o0 0 0 0
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1 0 1 1 2/3 -1/3 1/3
00 .1 =10 00 . _-1/3 _2/3. _1/3_|\.
0 0 0 O 0 0 0
0 0 0 0 0 0 0 * Hence r = 2
D =(i é) , EA = (23 13 13
-1/3 2/3  1/3
| x (3 -1 x -1 [2/5 1/5)
and 1, + DD -(_1 2) . Thus (I, +DD) " = (1/5 34

and A" = Ir) (. +mHL g (EA*)
D* T 0

30 3

_1 [-1 5 4

T |4 5 -1] .
3 0 3

It should be noted that the matrix to be inverted, (I2 + DD+),
is the same as the matrix (AA* + BB*) of section three which is the
same as R*R of section two. This method has the advantage in that
it requires the inversion of only one matrix and has a concise

computational layout.

6.9. Ben-Israel and Charnes Method

In their comprehensive paper on generalized inverses, Ben-Israel
and Charnes include several alternative expressions for the pseudo
inverse of a matrix. Included among those is the Lagrange-Sylvester

interpolation polynomial for At .




For any square matrix A, let o(A) denote the spectrum of
A (the set of all eigenvalues of A).
Then

n *®
At - 1, o[ Moco i B I)) A"
reo (A A) A;‘ego @y A O

where for the real number ), A= 1/x if 2=0 and A =0 if
A= 0.

In a footnote, it is pointed out by the authors that the
Lagrange-Sylvester interpolation polynomial is not a practical way
for computing A+, since it is very sensitive to errors in the
computed values of o(A*A) .

Also the computation of the eigenvalues of A*A is itself a

troublesome task although there are schemes for computing them.
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Example: Let
1 0 1 1 . 2 1 1 2
A = 0 1 -1 0 , then AA = 1 2 -1 1
1 1 0 1 1 -1 2 1
2 1 1 2
*

and solving IA*A - \I| =0 for A we get that o(AA) = {0, 3, 5} .

Hence 1 *

A - . W Moe(0,3,5)A A~ 8l A
x=3.5 it (x-6)
’ Mo0e{0,3,5)

* * * * *® ]
+ (AAOI(AASDA _ o+ _(AA-0.I)(AA-3DA

(3-0) (3-5) (5-0) (5-3)

=3
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which upon simplifying becomes

3 0 3
A+=%-5--154
4 -5 -1
3 0 3

6.10. Ben-Israel Method

Ben-Israel developed a recursive technique for calculating the
pseudo inverse of a matrix which is a géneralization of an
iterative method, due to Schulz [81], in which the sequence of matrices

are defined recursively by

X

1l = X (21 - Axn), n=20,1, 2,3, ... 1)

and is shown to converge to A'1 whenever Xy approximates A-l.

Ben-Israel pointed out the fact that the computational significance

of his iterative method was impaired by the need for knowledge of AAT.
However, in the months between the completion of thses results and
their publication, Ben-Israel substantially improved his theorem

by finding a starting value which waives the need for AA*. In the
discussion below, we consider Ben=Israel's original iterative method

and then his modification of it.

Theorem 6.6: The sequence of matrices defined by

X

n+l xn (zp

Ry T A, m=0,1,2, ... (2)

where X0 is an n x m complex matrix satisfying




<
H

o o

X

IIAX‘PR(A)” <1,

”XA’ PR(A*)” <1,

converges to the pseudoinverse A" of A.

Proof: As mentioned before (and as is shown in Ben-Israel

and Charnes [5], the pseudoinverse A" of A is characterized as

the unique solution of the matrix equations

AX = PR(A) s

XA = Ppa®y .

Therefore, it is enough to show that

Xne1 = X (@Ppay - AXY)

satisfies
N

lim ||an - PR(A*)II =0 .
0 .

From Equations 2, 3, and 4, we show that

x :
A B for some nonsingular m x m matrix B,

*
CoA for some nonsingular n x n matrix Co’

(3)

4)

(5)

(6)

(N

(8)

(9)

(10)

(11)

(12)
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where B, C are recursively computed as

*
Bop - By(Ppeay - MB)
Coep = Gy (2 *

Now, from equation 3

)(1 = A Bo
Suppose
- *
Xn = A Bn
*
A By 1@Ppa) -
then
Xe1 = X, (2P RQA) AXp)
_ ®
®
=AB 1

®
The proof that X, = CA 1s similar.

Now, by equation 2 we have

X

Ao = A (Ppeay -

-AX AXP

n+1 R(A)

- A

Prea) +1 = Preay ™ M Preay

Prea) ™ A = CPreay - AXPrep) -

m'B_)

ntl = Xn(@Preay - AXY)

ne1 = Mg (Preay = A + APpopy
- A (Prepy - AXY)
- A CPreay -
A, (Preay -
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since PR(AJ is idempotent. But by equation 12,

co
]
@]
::x>

&
L]
3
b3

Also,

but

therefore

L R ] _ ® *

ACnA

k ®

XnA
ax 1"

It follows that

APray = Preay™n -

Therefore,
2
Prea) ~ M1 = Cpeay - Ay
and )
||PR(A) ) Axn+1II = I|PR(A) -AC", n=0,1,2,...

which, in view of equation 5, proves equation 9.
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To prove equation 10, we write

Prea"y - Xne1® = Prea™y - Xa(@PReay - AXHA

which is rewritten, by equation 11, as

. 2
Pra®) ™ %t = Pr@at) - PreayRA - XA Y (XA
since
Xy (2P p))A = 2XA
=X A+ XA
_ ®
= ABA+ XA
= PpahyA'B, "5 A+ X A
= PpatyXd + XA -
But
2
Prea™ - PraMH%t - XA+ AT =
Prea"™y Prea™y - X - XACPrnY - XA) =
" Prea’y - x
so that
1Preay - XaorAll < 11Ppea®y - XAIIZ, n=0,1,2, ...

which, by equation 6, proves equation 10.
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Theorem 6.7: Let A be an arbitrary non-zero complex

mxn matrix of rank r and let
® ® : ®
Al(AA)gJ\Z(AA)g_. . .3Ar(AA)

®
denote the non-zero eigenvalues of AA . _I_g the real scalar

satisfies
0 2
<< ——a (13)
A (A7)
then the sequence defined by
= | 14
X, = aA (14)
Xk+1 = l((ZI - Axk) , k=0,1,2, ... (15)

converges to A+ as k»= ,

Proof: The matrix X, , defined by equations 14 and 18,
satisfies equations 3, 4, 5, and 6. To show that X, satisfies

equation 5

||Axo- 1’

PR(A) I I <

®
we note that AA+(= PR(A)) and AA are comuting Hermitian
matrices with the same range space. The eigenvalues of the m x m

. * +
matrix AXO - pR(A) (= aAA - AA') are therefore

*
axl(AA)-l for i=1,2,...,r
(16)

0 for i=r+¢l, . .. ,m
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and by equation 13 are all less than 1 in absolute value.

That is
* + .
Ixi(aAA-AA)|<1,1=1,. | an
and similarly
* + .
IAi(aAA-AA)|<1,1=1,...,n. (18)
*
Indeed the non-zero eigenvalues of (cAA - AA+) and
®
(A A - A+A) are identical. Equations 5 and 6 hold, with
Euclidean norm, because of equations 10 and 11, respectively.
(Actually, Equations 17 and 18 suffice for the convergence of
equation 15.)
*
Now the process, initiated with X, = oA , retains the
form of equation 12:
_ ®
X = GA
and since
® _ &
APpay = A (19)
it follows that
xk(ZPR(A) - AX)) = Xk(ZI - AXk) », k=0,1,2,... (20)

and the convergence of equation 15 follows from that of equation 2.




It is interesting to note that it can be shown in a similar

manner that the sequence defined by

&_.'1 = (ZI - xkA)xk 'y k = 0, 1, 2, * o o
. * +
with X, =A , converges to A .

In applying the method of equation 15, it is not necessary
® ®
to compute M (AA). Writing AA = (bi J.) , we conclude from the

Gershgorin Theorem that

m
Al(AA*) < max { ¢ ]bi.l}
i=1,... ,m j=1 J

Therefore equation 13 can be replaced by

0 <a <

Examples of this method and application are given in Ben-Israel

and Cohen [7].
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6.11 Other Methods

In an abstract of a paper presented by E. H. Moore [65]
in June, 1920, he gave an explicit formula for each element in the
pseudo inverse. This method depends upon the evaluation of many
determinants and also presupposes a knowledge of the rank of the
matrix A. Its importance is simply ij:s explicit nature. It is
impractical for calculating the pseudo inverse.

There are several infinite series representations for A
given by Ben-Israel and Charnes [6]. For example,

* * .k
A = I A (I+A\)
k=1

where A* may not be removed as a factor and the series exist
for all A since without loss of generality, null rows or columns
may be added to fill out non-square matrices.

Different expressions and computation schemes are continuously
appearing in the literature. A thorough analysis of the methods
above, however, indicates that some of these methods are quite

efficient in obtaining At .
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